Back to Search
Start Over
Impact of Preload on Right Ventricular Hemodynamics in Acute Pulmonary Embolism
- Source :
- Mortensen, C S, Kramer, A, Schultz, J, Lyhne, M D, Nielsen-Kudsk, J E & Andersen, A 2020, ' Impact of Preload on Right Ventricular Hemodynamics in Acute Pulmonary Embolism ', Critical Care Medicine, vol. 48, no. 12, pp. e1306-e1312 . https://doi.org/10.1097/CCM.0000000000004643
- Publication Year :
- 2020
-
Abstract
- OBJECTIVES: To compare the hemodynamic effects of increased versus decreased preload in a porcine model of acute intermediate-risk pulmonary embolism.DESIGN: Randomized, controlled animal study.SETTING: Tertiary medical center, animal research laboratory.SUBJECTS: Female, Danish slaughter pigs (n = 22, ~ 60 kg).INTERVENTIONS: Acute pulmonary embolism was induced by large emboli made from clotting of autologous blood. Sixteen animals were randomized to either fluid loading (n = 8, isotonic saline, 1 L/hr for 2 hr) or diuretic treatment (n = 8, furosemide, 40 mg every 30 min, total 160 mg) and compared with a vehicle group (n = 6, no treatment).MEASUREMENTS AND MAIN RESULTS: Hemodynamics were evaluated at baseline, after pulmonary embolism and after each dose by biventricular pressure-volume loops, invasive pressures, diuretic output, respiratory variables, and blood analysis. Pulmonary embolism increased mean pulmonary arterial pressure (p < 0.0001), pulmonary vascular resistance (p = 0.008), right ventricular arterial elastance (p = 0.003), and right ventricular end-systolic volume (p = 0.020) while right ventricular stroke volume and right ventricular ejection fraction were decreased (p = 0.047 and p = 0.0003, respectively) compared with baseline. Fluid loading increased right ventricular end-diastolic volume (+31 ± 13 mL; p = 0.004), right ventricular stroke volume (+23 ± 10 mL; p = 0.009), cardiac output (+2,021 ± 956 mL; p = 0.002), and right ventricular ejection fraction (+7.6% ± 1.5%; p = 0.032), whereas pulmonary vascular resistance decreased (-202 ± 65 dynes; p = 0.020) compared with vehicle. Diuretic treatment decreased right ventricular end-diastolic volume (-84 ± 11 mL; p < 0.001), right ventricular stroke volume (-40 ± 6 mL; p = 0.001), cardiac output (-3,327 ± 451 mL; p = 0.005), and mean pulmonary arterial pressure (-7 ± 1 mm Hg; p < 0.001) and increased right ventricular end-systolic elastance (+0.72 ± 0.2 mm Hg/mL; p < 0.001) and systemic vascular resistance (+1,812 ± 767 dynes; p < 0.001) with no effects on mean arterial pressure.CONCLUSIONS: In a porcine model of acute intermediate-risk pulmonary embolism, fluid loading increased right ventricular preload and right ventricular stroke volume, whereas diuretics decreased right ventricular preload and right ventricular stroke volume without affecting mean arterial pressure.
- Subjects :
- medicine.medical_specialty
Mean arterial pressure
Swine
medicine.medical_treatment
Hemodynamics
Blood Pressure
Pulmonary arterial pressure
Critical Care and Intensive Care Medicine
03 medical and health sciences
0302 clinical medicine
Internal medicine
Medicine
Animals
Respiratory system
business.industry
Furosemide
030208 emergency & critical care medicine
medicine.disease
Pulmonary embolism
Preload
030228 respiratory system
cardiovascular system
Cardiology
Ventricular Function, Right
Female
Vascular Resistance
Diuretic
business
Pulmonary Embolism
medicine.drug
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Mortensen, C S, Kramer, A, Schultz, J, Lyhne, M D, Nielsen-Kudsk, J E & Andersen, A 2020, ' Impact of Preload on Right Ventricular Hemodynamics in Acute Pulmonary Embolism ', Critical Care Medicine, vol. 48, no. 12, pp. e1306-e1312 . https://doi.org/10.1097/CCM.0000000000004643
- Accession number :
- edsair.doi.dedup.....355d67a062300ed36e4ac208fce217dc
- Full Text :
- https://doi.org/10.1097/CCM.0000000000004643