Back to Search
Start Over
Maximum modulus principle for 'holomorphic functions' on the quantum matrix ball
- Source :
- Bershtein, O, Giselsson, O & Turowska, L 2019, ' Maximum modulus principle for “holomorphic functions” on the quantum matrix ball ', Journal of Functional Analysis, vol. 276, no. 5, pp. 1479-1509 . https://doi.org/10.1016/j.jfa.2018.09.003
- Publication Year :
- 2017
-
Abstract
- We describe the Shilov boundary ideal for a q-analog of the algebra of holomorphic functions on the unit ball in the space of $n\times n$ matrices and show that its $C^*$-envelope is isomorphic to the $C^*$-algebra of continuous functions on the quantum unitary group $U_q(n)$.<br />27 pages,v.3:accepted for publication in Journal Funct.Anal., crrected som typos, proof of Lemma 10 changed, a reference added, an acknowledgement added
- Subjects :
- Unit sphere
Pure mathematics
Boundary ideal
Holomorphic function
17B37, 46L07, 46L52, 47A20
01 natural sciences
TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY
Unitary group
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
0103 physical sciences
FOS: Mathematics
Ball (mathematics)
0101 mathematics
Operator Algebras (math.OA)
Mathematics
Quantum group
Mathematics::Complex Variables
010102 general mathematics
Matrix mechanics
Mathematics - Operator Algebras
Maximum modulus principle
Shilov boundary
010307 mathematical physics
C-envelope
Analysis
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Bershtein, O, Giselsson, O & Turowska, L 2019, ' Maximum modulus principle for “holomorphic functions” on the quantum matrix ball ', Journal of Functional Analysis, vol. 276, no. 5, pp. 1479-1509 . https://doi.org/10.1016/j.jfa.2018.09.003
- Accession number :
- edsair.doi.dedup.....3601f93b547636eeaf553691dc99d68a
- Full Text :
- https://doi.org/10.1016/j.jfa.2018.09.003