Back to Search Start Over

Maximum modulus principle for 'holomorphic functions' on the quantum matrix ball

Authors :
Olga Bershtein
Olof Giselsson
Lyudmila Turowska
Source :
Bershtein, O, Giselsson, O & Turowska, L 2019, ' Maximum modulus principle for “holomorphic functions” on the quantum matrix ball ', Journal of Functional Analysis, vol. 276, no. 5, pp. 1479-1509 . https://doi.org/10.1016/j.jfa.2018.09.003
Publication Year :
2017

Abstract

We describe the Shilov boundary ideal for a q-analog of the algebra of holomorphic functions on the unit ball in the space of $n\times n$ matrices and show that its $C^*$-envelope is isomorphic to the $C^*$-algebra of continuous functions on the quantum unitary group $U_q(n)$.<br />27 pages,v.3:accepted for publication in Journal Funct.Anal., crrected som typos, proof of Lemma 10 changed, a reference added, an acknowledgement added

Details

Language :
English
Database :
OpenAIRE
Journal :
Bershtein, O, Giselsson, O & Turowska, L 2019, ' Maximum modulus principle for “holomorphic functions” on the quantum matrix ball ', Journal of Functional Analysis, vol. 276, no. 5, pp. 1479-1509 . https://doi.org/10.1016/j.jfa.2018.09.003
Accession number :
edsair.doi.dedup.....3601f93b547636eeaf553691dc99d68a
Full Text :
https://doi.org/10.1016/j.jfa.2018.09.003