Back to Search
Start Over
Range of Asymptotic Behaviour of the Optimality Probability of the Expert and Majority Rules
- Source :
- Journal of Applied Probability. 43:16-31
- Publication Year :
- 2006
- Publisher :
- Cambridge University Press (CUP), 2006.
-
Abstract
- We study the uncertain dichotomous choice model. In this model, a group of expert decision makers is required to select one of two alternatives. The applications of this model are relevant to a wide variety of areas. A decision rule translates the individual opinions of the members into a group decision, and is optimal if it maximizes the probability of the group making a correct choice. In this paper, we assume the correctness probabilities of the experts to be independent random variables selected from some given distribution. Moreover, the ranking of the members in the group is (at least partly) known. Thus, one can follow rules based on this ranking. The extremes are the expert rule and the majority rule. The probabilities of the two extreme rules being optimal were compared in a series of early papers, for a variety of distributions. In most cases, the asymptotic behaviours of the probabilities of the two extreme rules followed the same patterns. Do these patterns hold in general? If not, what are the ranges of possible asymptotic behaviours of the probabilities of the two extreme rules being optimal? In this paper, we provide satisfactory answers to these questions.
- Subjects :
- Statistics and Probability
Majority rule
Chain rule (probability)
General Mathematics
05 social sciences
Decision rule
01 natural sciences
0506 political science
010104 statistics & probability
Probability theory
Ranking
050602 political science & public administration
Econometrics
Probability distribution
0101 mathematics
Statistics, Probability and Uncertainty
Random variable
Mathematics
Optimal decision
Subjects
Details
- ISSN :
- 14756072 and 00219002
- Volume :
- 43
- Database :
- OpenAIRE
- Journal :
- Journal of Applied Probability
- Accession number :
- edsair.doi.dedup.....36082d8b07676de06f418c9e16f86400
- Full Text :
- https://doi.org/10.1239/jap/1143936240