Back to Search
Start Over
Bandwidth Allocation and Service Differentiation in D2D Wireless Networks
- Source :
- IEEE INFOCOM 2020-IEEE Conference on Computer Communications, IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Jul 2020, Toronto / Virtual, Canada. pp.2116-2125, ⟨10.1109/INFOCOM41043.2020.9155469⟩, INFOCOM
- Publication Year :
- 2020
- Publisher :
- HAL CCSD, 2020.
-
Abstract
- Inspired by a new feature in 5G NR called bandwidth part (BWP), this paper presents a bandwidth allocation (BA) model that allows one to adapt the bandwidth allocated to users depending on their data rate needs. Specifically, in adaptive BA, a wide bandwidth is divided into chunks of smaller bandwidths and the number of bandwidth chunks allocated to a user depends on its needs or type. Although BWP in 5G NR mandates allocation of a set of contiguous bandwidth chunks, our BA model also allows other assumptions on chunk allocation such as the allocation of any set of bandwidth chunks, as in, e.g., LTE resource allocation, where chunks are selected uniformly at random. The BA model studied here is probabilistic in that the user locations are assumed to form a realization of a Poisson point process and each user decides independently to be of a certain type with some probability. This model allows one to quantify spectrum sharing and service differentiation in this context, namely to predict what performance a user gets depending on its type as well as the overall performance. This is based on exact representations of key performance metrics for each user type, namely its success probability, the meta distribution of its signal-to-interference ratio, and its Shannon throughput. We show that, surprisingly, the higher traffic variability stemming from adaptive BA is beneficial: when comparing two networks using adaptive BA and having the same mean signal and the same mean interference powers, the network with higher traffic variability performs better for all these performance metrics. With respect to Shannon throughput, we observe that our BA model is roughly egalitarian per Hertz and leads to a linear service differentiation in aggregated throughput value.<br />Comment: IEEE INFOCOM 2020
- Subjects :
- FOS: Computer and information sciences
Computer science
02 engineering and technology
User type
01 natural sciences
[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI]
Contiguous bandwidth chunks
BWP
0202 electrical engineering, electronic engineering, information engineering
Bandwidth (computing)
Wireless networks
Resource allocation
Sochastic processes
Telecommunication network management
Bandwidth allocation model
User locations
Channel allocation schemes
Wireless network
Resource management
LTE resource allocation
Bandwidth allocation
Radiofrequency interference
bandwidth part
Computer network
Computer Science - Information Theory
Channel allocation
Throughput
Context (language use)
Computer Science - Networking and Internet Architecture
Radio networks
Wreless channels
Bandwidth
BA model
Long Term Evolution
Probability
Smaller bandwidths
Linear service differentiation
Networking and Internet Architecture (cs.NI)
business.industry
Information Theory (cs.IT)
010401 analytical chemistry
Adaptation models
020206 networking & telecommunications
0104 chemical sciences
5G NR
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Chunk allocation
business
Cellular radio
Subjects
Details
- Language :
- English
- ISBN :
- 978-1-72816-412-0
- ISBNs :
- 9781728164120
- Database :
- OpenAIRE
- Journal :
- IEEE INFOCOM 2020-IEEE Conference on Computer Communications, IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Jul 2020, Toronto / Virtual, Canada. pp.2116-2125, ⟨10.1109/INFOCOM41043.2020.9155469⟩, INFOCOM
- Accession number :
- edsair.doi.dedup.....361b0390334ef2f349e648255b1cb285