Back to Search Start Over

Porous titanium-hydroxyapatite composite coating obtained on titanium by cold gas spray with high bond strength for biomedical applications

Authors :
Sergi Dosta
Francisco Javier Gil
Jose Maria Guilemany
Jordi Guillem-Marti
Nuria Cinca
Miquel Punset
Irene Garcia Cano
Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
Universitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
Universitat de Barcelona. Departament de Ciència dels Materials i Química Física
Source :
Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Dipòsit Digital de la UB, Universidad de Barcelona
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

The lack of bioactivity of titanium (Ti) is one of the main drawbacks for its application in biomedical implants since it can considerable reduce its osseointegration capacities. One strategy to overcome this limitation is the coating of Ti with hydroxyapatite (HA), which presents similar chemical composition than bone. Nonetheless, most of the strategies currently used generate a non-stable coating and may produce the formation of amorphous phases when high temperatures are used. Herein, we proposed to generate a Ti-HA composite coating on Ti surface to improve the stability of the bioactive coating. The coating was produced by cold gas spraying, which uses relatively low temperatures, and compared to a Ti coating. The coating was thoroughly characterized in terms of morphology, roughness, porosity and phase composition. In addition, the coating was mechanically characterized using a tensile loading machine. Finally, biological response was evaluated after seeding SaOS-2 osteoblasts and measuring cell adhesion, proliferation and differentiation. The novel Ti-HA coating presented high porosity and high adhesion and bond strengths. No change in HA phases was observed after coating formation. Moreover, osteoblast-like cells adhered, proliferated and differentiated on Ti-HA coated surfaces suggesting that the novel coating might be a good candidate for biomedical applications. info:eu-repo/semantics/acceptedVersion

Details

ISSN :
09277765
Volume :
180
Database :
OpenAIRE
Journal :
Colloids and Surfaces B: Biointerfaces
Accession number :
edsair.doi.dedup.....3675f4af5f5f5dbd7c802c7b8209a22d
Full Text :
https://doi.org/10.1016/j.colsurfb.2019.04.048