Back to Search
Start Over
A Hennings type invariant of 3-manifolds from a topological Hopf superalgebra
- Source :
- Quantum Topology. 11:609-655
- Publication Year :
- 2020
- Publisher :
- European Mathematical Society - EMS - Publishing House GmbH, 2020.
-
Abstract
- We prove the unrolled superalgebra $\mathcal{U}_{\xi}^{H}\mathfrak{sl}(2|1)$ has a completion which is a ribbon superalgebra in a topological sense where $\xi$ is a root of unity of odd order. Using this ribbon superalgebra we construct its universal invariant of links. We use it to construct an invariant of $3$-manifolds of Hennings type.
- Subjects :
- [MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA]
Root of unity
Mathematics::Rings and Algebras
Geometric Topology (math.GT)
Lie superalgebra
16. Peace & justice
Topology
Mathematics::Geometric Topology
57M27, 17B37
Superalgebra
Mathematics - Geometric Topology
[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]
Mathematics::Quantum Algebra
Mathematics - Quantum Algebra
Ribbon
FOS: Mathematics
[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]
Quantum Algebra (math.QA)
Geometry and Topology
Invariant (mathematics)
Mathematics::Representation Theory
Mathematical Physics
[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
Mathematics
Subjects
Details
- ISSN :
- 1663487X
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Quantum Topology
- Accession number :
- edsair.doi.dedup.....36a80d60dc477e4b4b11c935464cf334