Back to Search Start Over

A Hennings type invariant of 3-manifolds from a topological Hopf superalgebra

Authors :
Ngoc Phu Ha
Laboratoire de Mathématiques de Bretagne Atlantique (LMBA)
Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
Université de Bretagne Sud (UBS)
Ha, Ngoc Phu
Université de Brest (UBO)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Quantum Topology. 11:609-655
Publication Year :
2020
Publisher :
European Mathematical Society - EMS - Publishing House GmbH, 2020.

Abstract

We prove the unrolled superalgebra $\mathcal{U}_{\xi}^{H}\mathfrak{sl}(2|1)$ has a completion which is a ribbon superalgebra in a topological sense where $\xi$ is a root of unity of odd order. Using this ribbon superalgebra we construct its universal invariant of links. We use it to construct an invariant of $3$-manifolds of Hennings type.

Details

ISSN :
1663487X
Volume :
11
Database :
OpenAIRE
Journal :
Quantum Topology
Accession number :
edsair.doi.dedup.....36a80d60dc477e4b4b11c935464cf334