Back to Search
Start Over
Longest Palindromic Substring in Sublinear Time
- Source :
- 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022), 1-9, STARTPAGE=1;ENDPAGE=9;TITLE=33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022), Charalampopoulos, P, Pissis, S P & Radoszewski, J 2022, Longest Palindromic Substring in Sublinear Time . in H Bannai & J Holub (eds), 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022) . Leibniz International Proceedings in Informatics, LIPIcs, vol. 223, Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, pp. 1-9, 33rd Annual Symposium on Combinatorial Pattern Matching, CPM 2022, Prague, Czech Republic, 27/06/22 . https://doi.org/10.4230/LIPIcs.CPM.2022.20, 33rd Annual Symposium on Combinatorial Pattern Matching (CPM), 33rd Annual Symposium on Combinatorial Pattern Matching (CPM), 2022, Prague, Czech Republic. ⟨10.4230/LIPIcs.CPM.2022.20⟩
- Publication Year :
- 2022
- Publisher :
- Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2022.
-
Abstract
- We revisit the classic algorithmic problem of computing a longest palidromic substring. This problem is solvable by a celebrated 𝒪(n)-time algorithm [Manacher, J. ACM 1975], where n is the length of the input string. For small alphabets, 𝒪(n) is not necessarily optimal in the word RAM model of computation: a string of length n over alphabet [0,σ) can be stored in 𝒪(n log σ/log n) space and read in 𝒪(n log σ/log n) time. We devise a simple 𝒪(n log σ/log n)-time algorithm for computing a longest palindromic substring. In particular, our algorithm works in sublinear time if σ = 2^{o(log n)}. Our technique relies on periodicity and on the 𝒪(n log σ/log n)-time constructible data structure of Kempa and Kociumaka [STOC 2019] that answers longest common extension queries in 𝒪(1) time.<br />LIPIcs, Vol. 223, 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022), pages 20:1-20:9
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022), 1-9, STARTPAGE=1;ENDPAGE=9;TITLE=33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022), Charalampopoulos, P, Pissis, S P & Radoszewski, J 2022, Longest Palindromic Substring in Sublinear Time . in H Bannai & J Holub (eds), 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022) . Leibniz International Proceedings in Informatics, LIPIcs, vol. 223, Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, pp. 1-9, 33rd Annual Symposium on Combinatorial Pattern Matching, CPM 2022, Prague, Czech Republic, 27/06/22 . https://doi.org/10.4230/LIPIcs.CPM.2022.20, 33rd Annual Symposium on Combinatorial Pattern Matching (CPM), 33rd Annual Symposium on Combinatorial Pattern Matching (CPM), 2022, Prague, Czech Republic. ⟨10.4230/LIPIcs.CPM.2022.20⟩
- Accession number :
- edsair.doi.dedup.....36afe39d95c9adf0160ec66f5ff66ae1