Back to Search Start Over

An Interferometric View of H-MM1. I. Direct Observation of NH3 Depletion

Authors :
Jaime E. Pineda
Jorma Harju
Paola Caselli
Olli Sipilä
Mika Juvela
Charlotte Vastel
Erik Rosolowsky
Andreas Burkert
Rachel K. Friesen
Yancy Shirley
María José Maureira
Spandan Choudhury
Dominique M. Segura-Cox
Rolf Güsten
Anna Punanova
Luca Bizzocchi
Alyssa A. Goodman
Institut de recherche en astrophysique et planétologie (IRAP)
Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Department of Physics
Jaime E. Pineda
Jorma Harju
Paola Caselli
Olli Sipilä
Mika Juvela
Charlotte Vastel
Erik Rosolowsky
Andreas Burkert
Rachel K. Friesen
Yancy Shirley
María José Maureira
Spandan Choudhury
Dominique M. Segura-Cox
Rolf Güsten
Anna Punanova
Luca Bizzocchi
Alyssa A. Goodman
Source :
Astronomical Journal, The Astronomical Journal, The Astronomical Journal, 2022, 163, ⟨10.3847/1538-3881/ac6be7⟩
Publication Year :
2022
Publisher :
American Astronomical Society, 2022.

Abstract

Spectral lines of ammonia, NH$_3$, are useful probes of the physical conditions in dense molecular cloud cores. In addition to advantages in spectroscopy, ammonia has also been suggested to be resistant to freezing onto grain surfaces, which should make it a superior tool for studying the interior parts of cold, dense cores. Here we present high-resolution NH$_3$ observations with the Very Large Array (VLA) and Green Bank Telescope (GBT) towards a prestellar core. These observations show an outer region with a fractional NH$_3$ abundance of X(NH$_3$) = (1.975$\pm$0.005)$\times 10^{-8}$ ($\pm 10\%$ systematic), but it also reveals that after all, the X(NH$_3$) starts to decrease above a H$_2$ column density of $\approx 2.6 \times 10^{22}$ cm$^{-2}$. We derive a density model for the core and find that the break-point in the fractional abundance occurs at the density n(H$_2$) $\sim 2\times10^5$ cm$^{-3}$, and beyond this point the fractional abundance decreases with increasing density, following the power law $n^{-1.1}$. This power-law behavior is well reproduced by chemical models where adsorption onto grains dominates the removal of ammonia and related species from the gas at high densities. We suggest that the break-point density changes from core to core depending on the temperature and the grain properties, but that the depletion power law is anyway likely to be close to $n^{-1}$ owing to the dominance of accretion in the central parts of starless cores.<br />Comment: Accepted for publication in AJ. 18 Pages, 16 Figures, 3 Tables

Details

ISSN :
15383881 and 00046256
Volume :
163
Database :
OpenAIRE
Journal :
The Astronomical Journal
Accession number :
edsair.doi.dedup.....36e55cb249030abdca3f71b280511c88
Full Text :
https://doi.org/10.3847/1538-3881/ac6be7