Back to Search Start Over

Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties

Authors :
Wen-Di Liu
Shang-Fu Yuan
Zong-Jie Guan
Quan-Ming Wang
Source :
Nature Communications, Nature Communications, Vol 10, Iss 1, Pp 1-7 (2019)
Publication Year :
2019
Publisher :
Nature Publishing Group UK, 2019.

Abstract

Surface organic ligands are critical in determining the formation and properties of atomically precise metal nanoclusters. In contrast to the conventionally used thiolate, phosphine and alkynyl ligands, the amine ligand dipyridylamine is applied here as a protecting agent in the synthesis of atomically precise metal nanoclusters. We report two homoleptic amido-protected Ag nanoclusters as examples of all-nitrogen-donor-protected metal nanoclusters: [Ag21(dpa)12]SbF6 (Ag21) and [Ag22(dpa)12](SbF6)2 (Ag22) (dpa = dipyridylamido). Single crystal X-ray structural analysis reveals that both clusters consist of a centered-icosahedron Ag13 core wrapped by 12 dpa ligands. The flexible arrangement of the N donors in dpa facilitates the solvent-triggered reversible interconversion between Ag21 and Ag22 due to their very different solubility. The successful use of dpa in the synthesis of well-defined silver nanoclusters may motivate more studies on metal nanoclusters protected by amido type ligands.<br />Noble metal nanoclusters are commonly protected by thiolate, phosphine, or alkynyl ligands. Here, the authors synthesize two homoleptic amido-protected silver clusters, whose structures interconvert easily with changes of solvent due to the coordination flexibility and diverse binding modes of the nitrogen-donor ligands.

Details

Language :
English
ISSN :
20411723
Volume :
10
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....36fc313d4e43e16889b131c24ae64a36