Back to Search Start Over

Structural Evolution of Iron(III) Trifluoroacetate upon Thermal Decomposition: Chains, Layers, and Rings

Authors :
Kostiantyn V. Kravchyk
Michael Wörle
Renato Zenobi
Christoph P. Guntlin
Charles-Henri Lambert
Moulay Tahar Sougrati
Luzia Gyr
Maksym V. Kovalenko
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM)
Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
Institut Jean Lamour (IJL)
Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Department of Chemistry and Applied Biosciences [ETH Zürich] (D-CHAB)
Source :
Chemistry of Materials, 32 (6), Chemistry of Materials, Chemistry of Materials, American Chemical Society, 2020, 32 (6), pp.2482-2488. ⟨10.1021/acs.chemmater.9b05004⟩
Publication Year :
2020
Publisher :
American Chemical Society, 2020.

Abstract

Metal trifluoroacetates (TFAs) are commonplace precursors for bulk and nanostructured metal fluorides and oxides obtained usually through their thermal decomposition. Very little, however, is known about the atomistic mechanism of such a thermal conversion, or even the crystal structure of the precursors. In this study, we detail the structural evolution of Fe(TFA)3 upon its thermal decomposition into rhombohedral iron(III) fluoride. Several distinct structural motifs have been identified in the temperature range of 250–350 °C. In particular, Fe(TFA)3, Fe2F(TFA)5, and FeF(TFA)2 are composed of infinite chains. In addition, several volatile molecular species with ring structure—FenFn(TFA)2n (n = 6–10)—have been characterized both by single-crystal X-ray diffraction and by mass spectrometry. Further conversion of TFA groups into fluoride ions leads to a layered FeF2(TFA). All these compounds feature bridging TFA ligands and octahedral fluoro- or oxo-coordination of Fe. The retention of the +3 oxidation state is confirmed by 57Fe Mössbauer spectroscopy. Magnetization measurements point to the ferrimagnetic ordering in FeF2(TFA) at T ≤ 150 K, unlike Fe(TFA)3, which remains paramagnetic at as low as 10 K. This study highlights the potential of metal TFAs for the rational synthesis of molecular and solid-state hybrid compounds by their versatile thermal decomposition into fully inorganic materials.<br />Chemistry of Materials, 32 (6)<br />ISSN:0897-4756

Details

Language :
English
ISSN :
08974756 and 15205002
Database :
OpenAIRE
Journal :
Chemistry of Materials, 32 (6), Chemistry of Materials, Chemistry of Materials, American Chemical Society, 2020, 32 (6), pp.2482-2488. ⟨10.1021/acs.chemmater.9b05004⟩
Accession number :
edsair.doi.dedup.....371b8f5e281b1eae7c99ee8ae9d8f890
Full Text :
https://doi.org/10.1021/acs.chemmater.9b05004⟩