Back to Search Start Over

Translational control by eIF2α phosphorylation regulates vulnerability to the synaptic and behavioral effects of cocaine

Authors :
Andon N. Placzek
Wei Huang
Krešimir Krnjević
Gonzalo Viana Di Prisco
Peter Walter
Sanjeev Khatiwada
John A. Dani
Carmela Sidrauski
Mauro Costa-Mattioli
Source :
eLife, eLife, Vol 5 (2016)
Publication Year :
2016
Publisher :
eLife Sciences Publications, Ltd, 2016.

Abstract

Adolescents are especially prone to drug addiction, but the underlying biological basis of their increased vulnerability remains unknown. We reveal that translational control by phosphorylation of the translation initiation factor eIF2α (p-eIF2α) accounts for adolescent hypersensitivity to cocaine. In adolescent (but not adult) mice, a low dose of cocaine reduced p-eIF2α in the ventral tegmental area (VTA), potentiated synaptic inputs to VTA dopaminergic neurons, and induced drug-reinforced behavior. Like adolescents, adult mice with reduced p-eIF2α-mediated translational control were more susceptible to cocaine-induced synaptic potentiation and behavior. Conversely, like adults, adolescent mice with increased p-eIF2α became more resistant to cocaine's effects. Accordingly, metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD)—whose disruption is postulated to increase vulnerability to drug addiction—was impaired in both adolescent mice and adult mice with reduced p-eIF2α mediated translation. Thus, during addiction, cocaine hijacks translational control by p-eIF2α, initiating synaptic potentiation and addiction-related behaviors. These insights may hold promise for new treatments for addiction. DOI: http://dx.doi.org/10.7554/eLife.12052.001<br />eLife digest Drug addiction a is major mental health problem that presents a huge financial, social and legal burden worldwide. Adolescents are notoriously prone to drug abuse and addicts typically begin using drugs at a young age. However, an explanation for why young people are particularly vulnerable to the effects of addictive substances remains elusive. Addictive drugs change how the brain works, in particular by strengthening the connections (synapses) between brain cells (neurons) and making it easier for neurons to communicate with each other. Such strengthening of synaptic connections, which can be observed when the activity of the neurons is recorded with microelectrodes, relies on new proteins being made in the brain. Since adolescents have a greater capacity than adults to make new proteins, Huang et al. hypothesized that changes in synaptic strength might occur more easily in the brain of adolescents, explaining why they are more likely to become addicted to drugs than adults. A protein called eIF2α plays a key role in regulating the production of new proteins. Huang et al. discovered that reduced eIF2α activity accounts for why adolescents are particularly vulnerable to the synaptic and behavioral effects of cocaine. Giving adolescent mice a low dose of cocaine reduced the activity of eIF2α, caused an increase in the strength of synaptic connections in a part of the brain that processes pleasurable feelings, and promoted drug-reinforced behavior. This did not occur in adult mice. Reducing the activity of eIF2α using either genetics or pharmacological methods caused adult mice to become as vulnerable as adolescents to cocaine-induced changes in synaptic strength and addiction-related behavior. Conversely, increasing the activity of eIF2α made adolescent mice more resistant to cocaine’s effects; in other words, adolescents responded to cocaine more like adults. Huang et al. also found that other drugs of abuse, including alcohol, methamphetamine and nicotine, all reduce eIF2α activity, suggesting that eIF2α is a common target of different drugs of abuse. In a related study, Placzek et al. investigated the role of eIF2α in nicotine addiction in mice and humans. These findings raise several intriguing questions. How do cocaine and other drugs of abuse reduce eIF2α activity? Could variations in the activity of eIF2α or other components of the eIF2α pathway in the brain explain why some people are more likely to abuse drugs? Finally, could compounds that regulate the activity of eIF2α be useful for treating addiction? DOI: http://dx.doi.org/10.7554/eLife.12052.002

Details

ISSN :
2050084X
Volume :
5
Database :
OpenAIRE
Journal :
eLife
Accession number :
edsair.doi.dedup.....378b0bf5ada7f452a50520d26b312c29
Full Text :
https://doi.org/10.7554/elife.12052