Back to Search Start Over

System-on-module-based long-life electronics for remote sensing imaging with CubeSats in low-earth-orbits

Authors :
Stefan van Waasen
Martin Kaufmann
Heinz Rongen
G. Schardt
Tobias Nysten
Denis Froehlich
Markus Dick
Friedhelm Olschewski
Tom Neubert
Egon Zimmermann
Source :
Journal of applied remote sensing 13(03), 032507 (2019). doi:10.1117/1.JRS.13.032507 special issue: "CubeSats and NanoSats for Remote Sensing"
Publication Year :
2019

Abstract

CubeSats have become very popular science platforms in the past decades, leading to a continuously increasing number of developers in the academic field. For science missions, customized payload electronics have to be developed, depending on measurement tasks and requirements. Especially for the deployment of complex remote sensing payloads, state-of-the-art performance is needed to provide operational control and specific data processing, e.g., for image sensors. Highly integrated system-on-module (SoM) architectures offer low resource requirements regarding power and mass, but moderate to high processing power capabilities. However, a requirement to use a standard SoM in a satellite is to quantify its radiation tolerance. The radiation environment has been modeled, estimating the hazards at module level and reducing the risks to an acceptable level by applying appropriate mitigation techniques. This approach results in a sensor electronics design that combines hardware and software redundancies to assure system availability and reliability for long-life science missions in low earth orbits. Integrated in a miniaturized limb sounding instrument for atmospheric remote sensing imaging, the payload electronics will be deployed on a technology demonstration satellite for in-orbit verification.

Details

Language :
English
Database :
OpenAIRE
Journal :
Journal of applied remote sensing 13(03), 032507 (2019). doi:10.1117/1.JRS.13.032507 special issue: "CubeSats and NanoSats for Remote Sensing"
Accession number :
edsair.doi.dedup.....37a0f75ad8c1c29ced5135c6a84540d9
Full Text :
https://doi.org/10.1117/1.JRS.13.032507