Back to Search Start Over

Leveraging Sparsity with Spiking Recurrent Neural Networks for Energy-Efficient Keyword Spotting

Authors :
Dampfhoffer, Manon
Mesquida, Thomas
Hardy, Emmanuel
Valentian, Alexandre
Anghel, Lorena
SPINtronique et TEchnologie des Composants (SPINTEC)
Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Département Systèmes et Circuits Intégrés Numériques (DSCIN)
Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Laboratoire d'électronique et des technologies de l'Information [Sfax] (LETI)
École Nationale d'Ingénieurs de Sfax | National School of Engineers of Sfax (ENIS)
Source :
2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023), 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023), Jun 2023, Ixia-Ialyssos, Greece. ⟨10.1109/ICASSP49357.2023.10097174⟩
Publication Year :
2023
Publisher :
IEEE, 2023.

Abstract

International audience; Bio-inspired Spiking Neural Networks (SNNs) are promising candidates to replace standard Artificial Neural Networks (ANNs) for energy-efficient keyword spotting (KWS) systems. In this work, we compare the trade-off between accuracy and energy-efficiency of a gated recurrent SNN (Spik-GRU) with a standard Gated Recurrent Unit (GRU) on the Google Speech Command Dataset (GSCD) v2. We show that, by taking advantage of the sparse spiking activity of the SNN, both accuracy and energy-efficiency can be increased. Lever-aging data sparsity by using spiking inputs, such as those produced by spiking audio feature extractors or dynamic sensors, can further improve energy-efficiency. We demonstrate state-of-the-art results for SNNs on GSCD v2 with up to 95.9% accuracy. Moreover, SpikGRU can achieve similar accuracy than GRU while reducing the number of operations by up to 82%.

Details

Database :
OpenAIRE
Journal :
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Accession number :
edsair.doi.dedup.....38ea7485e15dc26cdabcb7e547480ce1
Full Text :
https://doi.org/10.1109/icassp49357.2023.10097174