Back to Search
Start Over
The <scp>SFRP1</scp> Inhibitor <scp>WAY</scp> ‐316606 Attenuates Osteoclastogenesis Through Dual Modulation of Canonical Wnt Signaling
- Source :
- Journal of Bone and Mineral Research. 37:152-166
- Publication Year :
- 2021
- Publisher :
- Wiley, 2021.
-
Abstract
- Osteoporosis, a noteworthy age-related disease induced by imbalanced osteogenesis and osteoclastogenesis, is a serious economic burden on both individuals and society. Small molecule drugs with dual effects on both bone resorption and mineralization are pressingly needed. Secreted frizzled-related protein 1 (SFRP1), a well-known extracellular repressor of canonical Wnt signaling, has been reported to regulate osteogenesis. Global SFRP1 knockout mice show significantly elevated bone mass. Although osteoclasts (OCs) express and secrete SFRP1, the role of SFRP1 produced by OCs in osteoclastogenesis and osteoporosis remains unclear. In this work, the levels of SFRP1 were found to be increased in patients with osteoporosis compared with healthy controls. Pharmacological inhibition of SFRP1 by WAY-316606 (WAY)- attenuated osteoclastogenesis and bone resorption in vitro. The expressions of OC-specific genes were suppressed by the SFRP1 inhibitor, WAY. Mechanistically, both extracellular and intracellular SFRP1 could block activation of the canonical Wnt signaling pathway, and WAY reverse the silent status of canonical Wnt through dual effects, leading to osteoclastogenesis inhibition and osteogenesis promotion. Severe osteopenia was observed in the ovariectomized (OVX) mouse model, and WAY treatment effectively improved the OVX-induced osteoporosis. In summary, this work found that SFRP1 supports OC differentiation and function, which could be attenuated by WAY through dual modulation of canonical Wnt signaling, suggesting its therapeutic potential. © 2021 American Society for Bone and Mineral Research (ASBMR).
- Subjects :
- Chemistry
Endocrinology, Diabetes and Metabolism
Osteoporosis
Wnt signaling pathway
Membrane Proteins
Osteoclasts
Cell Differentiation
medicine.disease
Bone resorption
Mice
medicine.anatomical_structure
Osteogenesis
Osteoclast
Knockout mouse
medicine
Extracellular
Ovariectomized rat
Cancer research
Animals
Humans
Intercellular Signaling Peptides and Proteins
Orthopedics and Sports Medicine
Wnt Signaling Pathway
Intracellular
Subjects
Details
- ISSN :
- 15234681 and 08840431
- Volume :
- 37
- Database :
- OpenAIRE
- Journal :
- Journal of Bone and Mineral Research
- Accession number :
- edsair.doi.dedup.....391410d91ca625c47f84896337361f72