Back to Search Start Over

Extracellular phosphate sensing in mammals: what do we know?

Authors :
Sarah Beck-Cormier
Laurent Beck
Jehan, Frederic
Université de Nantes - UFR Odontologie
Université de Nantes (UN)
Regenerative Medicine and Skeleton (RMeS)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE)
Université de Nantes (UN)-Université de Nantes (UN)-École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)
Regenerative Medicine and Skeleton research lab (RMeS)
Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE)
Université de Nantes (UN)-Université de Nantes (UN)
Source :
Journal of Molecular Endocrinology, Journal of Molecular Endocrinology, BioScientifica, 2020, pp.JME-20-0121.R1. ⟨10.1530/JME-20-0121⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

The critical role of phosphate (Pi) in countless biological processes requires the ability to control its concentration both intracellularly and extracellularly. At the body level, this concentration is finely regulated by numerous hormones, primarily parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23). While this control of the body’s Pi homeostasis is now well documented, knowledge of the mechanisms that allow the cell and the body to detect extracellular Pi variations is much less known. These systems are well described in bacteria, yeasts and plants, but as will be discussed in this review, knowledge obtained from these organisms is not entirely relevant to the requirements of Pi biology in mammals. In this review, we present the latest findings on extracellular Pi sensing in mammals, and describe the mammalian Pi sensors identified to date, such as SLC20A1 (PIT1)/SLC20A2 (PIT2) heterodimers and the calcium-sensing receptor (CaSR). While there are many questions remaining to be resolved, a clarification of the Pi sensing mechanisms in mammals is critical to understanding the deregulation of Pi balance in certain life-threatening disease states, such as end-stage renal disease and associated vascular calcifications, and to proposing relevant therapeutic approaches.

Details

Language :
English
ISSN :
09525041 and 14796813
Database :
OpenAIRE
Journal :
Journal of Molecular Endocrinology, Journal of Molecular Endocrinology, BioScientifica, 2020, pp.JME-20-0121.R1. ⟨10.1530/JME-20-0121⟩
Accession number :
edsair.doi.dedup.....395eb44fa106182fc1ac880ccc285c92
Full Text :
https://doi.org/10.1530/JME-20-0121⟩