Back to Search Start Over

Impact of Base Partitions on Multi-objective and Traditional Ensemble Clustering Algorithms

Authors :
Jane Piantoni
Marcilio C. P. de Souto
Tiemi C. Sakata
Katti Faceli
Júlio César Pereira
Departamento de Computação (DComp)
Universidade Federal de Sao Carlos - UFSCar (BRAZIL)
Laboratoire d'Informatique Fondamentale d'Orléans (LIFO)
Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
MAP: Machine Learning : a multistrategy approach/CAPES-COFECUB
Source :
Proc. of the 22nd International Conference on Neural Information Processing (ICONIP2015), 22nd International Conference on Neural Information Processing (ICONIP2015), 22nd International Conference on Neural Information Processing (ICONIP2015), Nov 2015, Istanbul, Turkey. pp.696-704, ⟨10.1007/978-3-319-26532-2_77⟩, Neural Information Processing ISBN: 9783319265315, ICONIP (1)
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; This paper presents a comparative study of cluster ensemble and multi-objective cluster ensemble algorithms. Our aim is to evaluate the extent to which such methods are able to identify the underlying structure hidden in a data set, given different levels of information they receive as input in the set of base partitions (BP). To do so, given a gold/reference partition, we produced nine sets of BP containing properties of interest for our analysis, such as large number of subdivisions of true clusters. We aim at answering questions such as: are the methods able to generate new and more robust partitions than those in the set of BP? are the techniques influenced by poor quality partitions presented in the set of BP?

Details

Language :
English
ISBN :
978-3-319-26531-5
ISBNs :
9783319265315
Database :
OpenAIRE
Journal :
Proc. of the 22nd International Conference on Neural Information Processing (ICONIP2015), 22nd International Conference on Neural Information Processing (ICONIP2015), 22nd International Conference on Neural Information Processing (ICONIP2015), Nov 2015, Istanbul, Turkey. pp.696-704, ⟨10.1007/978-3-319-26532-2_77⟩, Neural Information Processing ISBN: 9783319265315, ICONIP (1)
Accession number :
edsair.doi.dedup.....39666524d121103f774a0bad4e20389a
Full Text :
https://doi.org/10.1007/978-3-319-26532-2_77⟩