Back to Search
Start Over
Molecular and functional characterization of circulating extracellular vesicles from diabetic patients with and without retinopathy and healthy subjects
- Source :
- Experimental eye research. 176
- Publication Year :
- 2018
-
Abstract
- Diabetic retinopathy is a sight-threatening complication of diabetes, characterized by loss of retinal pericytes and abnormal angiogenesis. We previously demonstrated that extracellular vesicles (EVs) derived from mesenchymal stem cells cultured in diabetic-like conditions are able to enter the pericytes, causing their detachment and migration, and stimulating angiogenesis in vitro. The purpose of this work was the molecular and functional characterization of EVs derived from diabetic subjects with or without diabetic retinopathy, compared with healthy controls. Characterization of EVs extracted from serum/plasma of diabetic patients with or without retinopathy, and healthy controls, was performed by FACS and microarray analysis of microRNA (miRNA) content. Relevant miRNA expression was validated through qRT-PCR. EV influence on pericyte detachment, angiogenesis and permeability of the blood-retinal barrier was also investigated. Diabetic subjects had a 2.5 fold higher EV concentration than controls, while expression of surface molecules was unchanged. Microarray analysis revealed 11 differentially expressed miRNAs. Three of them (miR-150-5p, miR-21-3p and miR-30b-5p) were confirmed by qRT-PCR. Plasma EVs from subjects with diabetic retinopathy induced pericyte detachment and pericyte/endothelial cell migration, increased the permeability of pericyte/endothelial cell bilayers and the formation of vessel-like structures, when compared with EVs from controls. In conclusion, circulating EVs show differences between diabetic patients and healthy subjects. EVs extracted from plasma of diabetic retinopathy patients are able to induce features of retinopathy in in vitro models of retinal microvasculature. Our data suggest a role for miR-150-5p, miR-21-3p and miR-30b-5p as potential biomarkers of the onset of diabetic retinopathy.
- Subjects :
- diabetes, diabetic retinopathy, extracellular vesicles, angiogenesis, miR-150-5p, miR-21-3p, miR-30b-5p, pericytes
miR-30b-5p
0301 basic medicine
Adult
Male
Pathology
medicine.medical_specialty
Angiogenesis
Real-Time Polymerase Chain Reaction
Capillary Permeability
angiogenesis
03 medical and health sciences
Cellular and Molecular Neuroscience
chemistry.chemical_compound
Extracellular Vesicles
Diabetes mellitus
Blood-Retinal Barrier
Medicine
Humans
Cells, Cultured
Aged
Diabetic Retinopathy
diabetes
business.industry
Gene Expression Profiling
Mesenchymal stem cell
Retinal
Diabetic retinopathy
Middle Aged
medicine.disease
Flow Cytometry
Microarray Analysis
Sensory Systems
Healthy Volunteers
Endothelial stem cell
Ophthalmology
MicroRNAs
030104 developmental biology
medicine.anatomical_structure
Diabetes Mellitus, Type 1
chemistry
miR-150-5p
miR-21-3p
Female
Pericyte
business
Pericytes
Biomarkers
Retinopathy
Subjects
Details
- ISSN :
- 10960007
- Volume :
- 176
- Database :
- OpenAIRE
- Journal :
- Experimental eye research
- Accession number :
- edsair.doi.dedup.....39d1995bdd9e4e06bc68ef7cc5bd9655