Back to Search Start Over

Optimal Real-Time Bidding Strategies

Authors :
Olivier Guéant
Jean-Michel Lasry
Joaquin Fernandez-Tapia
Laboratoire de Probabilités et Modèles Aléatoires (LPMA)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Ecole Nationale de la Statistique et de l'Analyse Economique (ENSAE)
Ecole Nationale de la Statistique et de l'Analyse Economique
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Source :
Applied Mathematics Research eXpress, Applied Mathematics Research eXpress, Oxford University Press (OUP): Policy H-Oxford Open Option A, 2016
Publication Year :
2015
Publisher :
arXiv, 2015.

Abstract

International audience; The ad-trading desks of media-buying agencies are increasingly relying on complex algorithms for purchasing advertising inventory. In particular, Real-Time Bidding (RTB) algorithms respond to many auctions -- usually Vickrey auctions -- throughout the day for buying ad-inventory with the aim of maximizing one or several key performance indicators (KPI). The optimization problems faced by companies building bidding strategies are new and interesting for the community of applied mathematicians. In this article, we introduce a stochastic optimal control model that addresses the question of the optimal bidding strategy in various realistic contexts: the maximization of the inventory bought with a given amount of cash in the framework of audience strategies, the maximization of the number of conversions/acquisitions with a given amount of cash, etc. In our model, the sequence of auctions is modeled by a Poisson process and the \textit{price to beat} for each auction is modeled by a random variable following almost any probability distribution. We show that the optimal bids are characterized by a Hamilton-Jacobi-Bellman equation, and that almost-closed form solutions can be found by using a fluid limit. Numerical examples are also carried out.

Details

ISSN :
16871200 and 16871197
Database :
OpenAIRE
Journal :
Applied Mathematics Research eXpress, Applied Mathematics Research eXpress, Oxford University Press (OUP): Policy H-Oxford Open Option A, 2016
Accession number :
edsair.doi.dedup.....3a2a6977495f45182f345fd2148773d4
Full Text :
https://doi.org/10.48550/arxiv.1511.08409