Back to Search Start Over

Plant species diversity affects soilatmosphere fluxes of methane and nitrous oxide

Authors :
Michael Scherer-Lorenzen
Nina Buchmann
Xavier Le Roux
Franck Poly
Romain L. Barnard
Pascal A. Niklaus
Alexandra Weigelt
Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM)
Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Vétérinaire de Lyon (ENVL)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)
Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
University of Zurich
Niklaus, Pascal A
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Ecole Nationale Vétérinaire de Lyon (ENVL)
Source :
Oecologia, Oecologia, Springer Verlag, 2016, pp.1-12. ⟨10.1007/s00442-016-3611-8⟩, Oecologia, Springer Verlag, 2016, 181 (3), pp.1-12. ⟨10.1007/s00442-016-3611-8⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; Plant diversity effects on ecosystem functioning can potentially interact with global climate by altering fluxes of the radiatively active trace gases nitrous oxide (N2O) and methane (CH4). We studied the effects of grassland species richness (116) in combination with application of fertilizer (nitrogen:phosphorus:potassium = 100:43.6:83 kg ha-1 a-1) on N2O and CH4 fluxes in a long-term field experiment. Soil N2O emissions, measured over 2 years using static chambers, decreased with species richness unless fertilizer was added. N2O emissions increased with fertilization and the fraction of legumes in plant communities. Soil CH4 uptake, a process driven by methanotrophic bacteria, decreased with plant species numbers, irrespective of fertilization. Using structural equation models, we related trace gas fluxes to soil moisture, soil inorganic N concentrations, nitrifying and denitrifying enzyme activity, and the abundance of ammonia oxidizers, nitrite oxidizers, and denitrifiers (quantified by real-time PCR of gene fragments amplified from microbial DNA in soil). These analyses indicated that plant species richness increased soil moisture, which in turn increased N cycling-related activities. Enhanced N cycling increased N2O emission and soil CH4 uptake, with the latter possibly caused by removal of inhibitory ammonium by nitrification. The moisture-related indirect effects were surpassed by direct, moisture-independent effects opposite in direction. Microbial gene abundances responded positively to fertilizer but not to plant species richness. The response patterns we found were statistically robust and highlight the potential of plant biodiversity to interact with climatic change through mechanisms unrelated to carbon storage and associated carbon dioxide removal.

Details

Language :
English
ISSN :
00298549 and 14321939
Database :
OpenAIRE
Journal :
Oecologia, Oecologia, Springer Verlag, 2016, pp.1-12. ⟨10.1007/s00442-016-3611-8⟩, Oecologia, Springer Verlag, 2016, 181 (3), pp.1-12. ⟨10.1007/s00442-016-3611-8⟩
Accession number :
edsair.doi.dedup.....3a2c2e383e01bae4b00c3c8a91080d6e