Back to Search Start Over

A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models

Authors :
Jan Y Verbakel
Evangelia Christodoulou
Ewout W. Steyerberg
Jie Ma
Ben Van Calster
Gary S. Collins
Source :
Journal of Clinical Epidemiology, 110, 12-22, Journal of Clinical Epidemiology
Publication Year :
2019

Abstract

OBJECTIVES: The objective of this study was to compare performance of logistic regression (LR) with machine learning (ML) for clinical prediction modeling in the literature. STUDY DESIGN AND SETTING: We conducted a Medline literature search (1/2016 to 8/2017) and extracted comparisons between LR and ML models for binary outcomes. RESULTS: We included 71 of 927 studies. The median sample size was 1,250 (range 72-3,994,872), with 19 predictors considered (range 5-563) and eight events per predictor (range 0.3-6,697). The most common ML methods were classification trees, random forests, artificial neural networks, and support vector machines. In 48 (68%) studies, we observed potential bias in the validation procedures. Sixty-four (90%) studies used the area under the receiver operating characteristic curve (AUC) to assess discrimination. Calibration was not addressed in 56 (79%) studies. We identified 282 comparisons between an LR and ML model (AUC range, 0.52-0.99). For 145 comparisons at low risk of bias, the difference in logit(AUC) between LR and ML was 0.00 (95% confidence interval, -0.18 to 0.18). For 137 comparisons at high risk of bias, logit(AUC) was 0.34 (0.20-0.47) higher for ML. CONCLUSION: We found no evidence of superior performance of ML over LR. Improvements in methodology and reporting are needed for studies that compare modeling algorithms. ispartof: JOURNAL OF CLINICAL EPIDEMIOLOGY vol:110 pages:12-22 ispartof: location:United States status: published

Details

Language :
English
Database :
OpenAIRE
Journal :
Journal of Clinical Epidemiology, 110, 12-22, Journal of Clinical Epidemiology
Accession number :
edsair.doi.dedup.....3a3b34da36299a78a29d1ac2d89ed6b1