Back to Search Start Over

Stability of iron-bearing carbonates in the deep Earth's interior

Authors :
Volodymyr Svitlyk
Jeroen Jacobs
Sylvain Petitgirard
Michael Hanfland
Clemens Prescher
Catherine McCammon
Mohamed Mezouar
Marco Merlini
Leonid Dubrovinsky
Maxim Bykov
Valerio Cerantola
Ilya Kupenko
Innokenty Kantor
Elena Bykova
A. I. Chumakov
Leyla Ismailova
Rudolf Rüffer
Vitali B. Prakapenka
Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany
European Synchrotron Radiation Facility (ESRF)
DESY, Extreme Condit Beamline P02 2, Notkestr 85, D-22607 Hamburg, Germany
Univ Munster, Inst Mineral, Corrensstr 24, D-48149 Munster, Germany
Univ Milan, Dipartimento Sci Terra, Via Botticelli 23, I-20133 Milan, Italy
Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Ctr Hydrocarbon Recovery, Moscow 143026, Russia
Natl Univ Sci & Technol MSIS, Mat Modeling & Dev Lab, Moscow 119049, Russia
MAX IV Lab, Fotongatan 2, S-22594 Lund, Sweden
Univ Cologne, Inst Geol & Mineral, Greinstr 4-6, D-50939 Cologne, Germany
University of Chicago
Cerantola, V
Bykova, E
Kupenko, I
Merlini, M
Ismailova, L
Mccammon, C
Bykov, M
Chumakov, A
Petitgirard, S
Kantor, I
Svitlyk, V
Jacobs, J
Hanfland, M
Mezouar, M
Prescher, C
Ruffer, R
Prakapenka, V
Dubrovinsky, L
Source :
Nature Communications, Nature Communications, Nature Publishing Group, 2017, 8, 9 p. ⟨10.1038/ncomms15960⟩, Nature Communications 8, 15960 (2017). doi:10.1038/ncomms15960, Nature Communications, Vol 8, Iss 1, Pp 1-9 (2017), 'Nature Communications ', vol: 8, pages: 15960-1-15960-9 (2017)
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

The presence of carbonates in inclusions in diamonds coming from depths exceeding 670 km are obvious evidence that carbonates exist in the Earth’s lower mantle. However, their range of stability, crystal structures and the thermodynamic conditions of the decarbonation processes remain poorly constrained. Here we investigate the behaviour of pure iron carbonate at pressures over 100 GPa and temperatures over 2,500 K using single-crystal X-ray diffraction and Mössbauer spectroscopy in laser-heated diamond anvil cells. On heating to temperatures of the Earth’s geotherm at pressures to ∼50 GPa FeCO3 partially dissociates to form various iron oxides. At higher pressures FeCO3 forms two new structures—tetrairon(III) orthocarbonate Fe43+C3O12, and diiron(II) diiron(III) tetracarbonate Fe22+Fe23+C4O13, both phases containing CO4 tetrahedra. Fe4C4O13 is stable at conditions along the entire geotherm to depths of at least 2,500 km, thus demonstrating that self-oxidation-reduction reactions can preserve carbonates in the Earth’s lower mantle.<br />Carbonates are shown to exist in the lower mantle as seen in diamond inclusions, but thermodynamic constraints are poorly understood. Here, the authors synthesise two new iron carbonate compounds and find that self-oxidation-reduction reactions can preserve carbonates in the mantle.

Details

Language :
English
ISSN :
20411723
Database :
OpenAIRE
Journal :
Nature Communications, Nature Communications, Nature Publishing Group, 2017, 8, 9 p. ⟨10.1038/ncomms15960⟩, Nature Communications 8, 15960 (2017). doi:10.1038/ncomms15960, Nature Communications, Vol 8, Iss 1, Pp 1-9 (2017), 'Nature Communications ', vol: 8, pages: 15960-1-15960-9 (2017)
Accession number :
edsair.doi.dedup.....3aef467086092f1afd4e7f6975d7ed52
Full Text :
https://doi.org/10.1038/ncomms15960⟩