Back to Search Start Over

The growth of intermediate mass black holes through tidal captures and tidal disruption events

Authors :
Francesco Paolo Rizzuto
Thorsten Naab
Antti Rantala
Peter H Johansson
Jeremiah P Ostriker
Nicholas C Stone
Shihong Liao
Dimitrios Irodotou
Particle Physics and Astrophysics
Department of Physics
Source :
Monthly Notices of the Royal Astronomical Society. 521:2930-2948
Publication Year :
2023
Publisher :
Oxford University Press (OUP), 2023.

Abstract

We present $N\mathrm{-body} $ simulations, including post-Newtonian dynamics, of dense clusters of low-mass stars harbouring central black holes (BHs) with initial masses of 50, 300, and 2000 $\mathrm{M_{\odot}}$. The models are evolved with the $N\mathrm{-body} $ code \textsc{bifrost} to investigate the possible formation and growth of massive BHs by the tidal capture of stars and tidal disruption events (TDEs). We model star-BH tidal interactions using a velocity-dependent drag force, which causes orbital energy and angular momentum loss near the BH. About $\sim 20-30$ per cent of the stars within the spheres of influence of the black holes form Bahcall-Wolf cusps and prevent the systems from core collapse. Within the first 40 Myr of evolution, the systems experience 500 up to 1300 TDEs, depending on the initial cluster structure. Most ($> 95$ per cent) of the TDEs originate from stars in the Bahcall-Wolf cusp. We derive an analytical formula for the TDE rate as a function of the central BH mass, density and velocity dispersion of the clusters ($\dot{N}_{\mathrm{TDE}} \propto M\mathrm{_{BH}} \rho \sigma^{-3}$). We find that TDEs can lead a 300 $\mathrm{M_{\odot}}$ BH to reach $\sim 7000 \mathrm{M_{\odot}}$ within a Gyr. This indicates that TDEs can drive the formation and growth of massive BHs in sufficiently dense environments, which might be present in the central regions of nuclear star clusters.<br />Comment: 17 pages, 18 figures

Details

ISSN :
13652966 and 00358711
Volume :
521
Database :
OpenAIRE
Journal :
Monthly Notices of the Royal Astronomical Society
Accession number :
edsair.doi.dedup.....3af6252de39803f7d6aafb8b3fbec4f1
Full Text :
https://doi.org/10.1093/mnras/stad734