Back to Search Start Over

Efficient Computation of 3D Clipped Voronoi Diagram

Authors :
Dong-Ming Yan
Wenping Wang
Bruno Levy
Yang Liu
Geometry and Lighting (ALICE)
INRIA Lorraine
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Department of Computer Science [Hong Kong]
City University of Hong Kong [Hong Kong] (CUHK)
University of Cantabria
Bernard Mourrain
Scott Schaefer
Guoliang Xu
Source :
Lecture Notes in Computer Science, Geometric Modeling and Processing, Geometric Modeling and Processing, University of Cantabria, Jun 2010, Castro Urdiales, Spain. pp.269-282, ⟨10.1007/978-3-642-13411-1_18⟩, Advances in Geometric Modeling and Processing ISBN: 9783642134104, GMP
Publication Year :
2010

Abstract

International audience; The Voronoi diagram is a fundamental geometry structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact 3D domain (i.e. a finite 3D volume), some Voronoi cells of their Voronoi diagram are infinite, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is called a clipped Voronoi diagram. We present an efficient algorithm for computing the clipped Voronoi diagram for a set of sites with respect to a compact 3D volume, assuming that the volume is represented as a tetrahedral mesh. We also describe an application of the proposed method to implementing a fast method for optimal tetrahedral mesh generation based on the centroidal Voronoi tessellation.

Details

Language :
English
ISBN :
978-3-642-13410-4
ISSN :
03029743
ISBNs :
9783642134104
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Sciences (GMP 2010 Conference Proceedings)
Accession number :
edsair.doi.dedup.....3b099248027ea739029fb9304b105eb1
Full Text :
https://doi.org/10.1007/978-3-642-13411-1_18