Back to Search
Start Over
Homocysteine and A2A-D2 Receptor-Receptor Interaction at Striatal Astrocyte Processes
- Source :
- Journal of molecular neuroscience : MN. 65(4)
- Publication Year :
- 2018
-
Abstract
- The interaction between adenosine A2A and dopamine D2 receptors in striatal neurons is a well-established phenomenon and has opened up new perspectives on the molecular mechanisms involved in Parkinson's disease. However, it has barely been investigated in astrocytes. Here, we show by immunofluorescence that both A2A and D2 receptors are expressed in adult rat striatal astrocytes in situ, and investigate on presence, function, and interactions of the receptors in the astrocyte processes-acutely prepared from the adult rat striatum-and on the effects of homocysteine on the A2A-D2 receptor-receptor interaction. We found that A2A and D2 receptors were co-expressed on vesicular glutamate transporter-1-positive astrocyte processes, and confirmed that A2A-D2 receptor-receptor interaction controlled glutamate release-assessed by measuring the [3H]D-aspartate release-from the processes. The complexity of A2A-D2 receptor-receptor interaction is suggested by the effect of intracellular homocysteine, which reduced D2-mediated inhibition of glutamate release (homocysteine allosteric action on D2), without interfering with the A2A-mediated antagonism of the D2 effect (maintained A2A-D2 interaction). Our findings indicate the crucial integrative role of A2A-D2 molecular circuits at the plasma membrane of striatal astrocyte processes. The fact that homocysteine reduced D2-mediated inhibition of glutamate release could provide new insights into striatal astrocyte-neuron intercellular communications. As striatal astrocytes are recognized to be involved in Parkinson's pathophysiology, these findings may shed light on the pathogenic mechanisms of the disease and contribute to the development of new drugs for its treatment.
- Subjects :
- 0301 basic medicine
Male
Homocysteine
Receptor, Adenosine A2A
Allosteric regulation
Glutamic Acid
Rat striatum
Striatal slices
Rats, Sprague-Dawley
03 medical and health sciences
chemistry.chemical_compound
Cellular and Molecular Neuroscience
0302 clinical medicine
Allosteric Regulation
Dopamine receptor D2
medicine
Animals
Receptor
Cells, Cultured
Chemistry
Animal
Receptors, Dopamine D2
Glutamate receptor
General Medicine
A2A-D2 receptor heterodimers
Glutamate release
Adenosine
Corpus Striatum
Cell biology
Rats
030104 developmental biology
medicine.anatomical_structure
A2A-D2 receptor heterodimer
Astrocytes
Rat
Striatal slice
Astrocyte
030217 neurology & neurosurgery
Intracellular
medicine.drug
Subjects
Details
- ISSN :
- 15591166
- Volume :
- 65
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Journal of molecular neuroscience : MN
- Accession number :
- edsair.doi.dedup.....3b28d321c4558684f45168e9c7a1ef47