Back to Search Start Over

Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging

Authors :
Kyle P. Nadeau
Tyler B. Rice
Anthony J. Durkin
Bruce J. Tromberg
Source :
Nadeau, KP; Rice, TB; Durkin, AJ; & Tromberg, BJ. (2015). Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging. Journal of Biomedical Optics, 20(11). doi: 10.1117/1.JBO.20.11.116005. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/4pf8v0fj
Publication Year :
2015
Publisher :
eScholarship, University of California, 2015.

Abstract

© The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI.

Details

Language :
English
Database :
OpenAIRE
Journal :
Nadeau, KP; Rice, TB; Durkin, AJ; & Tromberg, BJ. (2015). Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging. Journal of Biomedical Optics, 20(11). doi: 10.1117/1.JBO.20.11.116005. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/4pf8v0fj
Accession number :
edsair.doi.dedup.....3b95f7f9c241a4df9e9b02def3ab2b12
Full Text :
https://doi.org/10.1117/1.JBO.20.11.116005.