Back to Search Start Over

Multifractal analysis of complex random cascades

Authors :
Julien Barral
Xiong Jin
Laboratoire Analyse, Géométrie et Applications (LAGA)
Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13)
SIgnals and SYstems in PHysiology & Engineering (SISYPHE)
Inria Paris-Rocquencourt
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
Source :
Communications in Mathematical Physics, Communications in Mathematical Physics, Springer Verlag, 2010, 297 (1), pp.129-168. ⟨10.1007/s00220-010-1030-y⟩, Communications in Mathematical Physics, 2010, 297 (1), pp.129-168. ⟨10.1007/s00220-010-1030-y⟩
Publication Year :
2009

Abstract

We achieve the multifractal analysis of a class of complex valued statistically self-similar continuous functions. For we use multifractal formalisms associated with pointwise oscillation exponents of all orders. Our study exhibits new phenomena in multifractal analysis of continuous functions. In particular, we find examples of statistically self-similar such functions obeying the multifractal formalism and for which the support of the singularity spectrum is the whole interval $[0,\infty]$.<br />37 pages, 8 figures

Details

Language :
English
ISSN :
00103616 and 14320916
Database :
OpenAIRE
Journal :
Communications in Mathematical Physics, Communications in Mathematical Physics, Springer Verlag, 2010, 297 (1), pp.129-168. ⟨10.1007/s00220-010-1030-y⟩, Communications in Mathematical Physics, 2010, 297 (1), pp.129-168. ⟨10.1007/s00220-010-1030-y⟩
Accession number :
edsair.doi.dedup.....3bbc864dd2d47b162c19b0b52ead36d5