Back to Search
Start Over
Multifractal analysis of complex random cascades
- Source :
- Communications in Mathematical Physics, Communications in Mathematical Physics, Springer Verlag, 2010, 297 (1), pp.129-168. ⟨10.1007/s00220-010-1030-y⟩, Communications in Mathematical Physics, 2010, 297 (1), pp.129-168. ⟨10.1007/s00220-010-1030-y⟩
- Publication Year :
- 2009
-
Abstract
- We achieve the multifractal analysis of a class of complex valued statistically self-similar continuous functions. For we use multifractal formalisms associated with pointwise oscillation exponents of all orders. Our study exhibits new phenomena in multifractal analysis of continuous functions. In particular, we find examples of statistically self-similar such functions obeying the multifractal formalism and for which the support of the singularity spectrum is the whole interval $[0,\infty]$.<br />37 pages, 8 figures
- Subjects :
- Pointwise
Class (set theory)
28A78, 28A80
Oscillation
26A30
Multifractal formalism
010102 general mathematics
FOS: Physical sciences
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
Multifractal system
Interval (mathematics)
Physics::Data Analysis
Statistics and Probability
01 natural sciences
Rotation formalisms in three dimensions
010104 statistics & probability
Statistical physics
0101 mathematics
Singularity spectrum
Mathematical Physics
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 00103616 and 14320916
- Database :
- OpenAIRE
- Journal :
- Communications in Mathematical Physics, Communications in Mathematical Physics, Springer Verlag, 2010, 297 (1), pp.129-168. ⟨10.1007/s00220-010-1030-y⟩, Communications in Mathematical Physics, 2010, 297 (1), pp.129-168. ⟨10.1007/s00220-010-1030-y⟩
- Accession number :
- edsair.doi.dedup.....3bbc864dd2d47b162c19b0b52ead36d5