Back to Search Start Over

Advanced Meta-Modelling Techniques and Sensitivity Analysis for Rotordynamics in an Uncertain Context

Authors :
Denimal, Enora
Sinou, Jean-Jacques
Statistical Inference for Structural Health Monitoring (I4S)
Inria Rennes – Bretagne Atlantique
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Département Composants et Systèmes (COSYS)
Université Gustave Eiffel-Université Gustave Eiffel
Laboratoire de Tribologie et Dynamique des Systèmes (LTDS)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Ecole Nationale d'Ingénieurs de Saint Etienne (ENISE)-Centre National de la Recherche Scientifique (CNRS)
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Source :
Model Validation and Uncertainty Quantification, Volume 3 ISBN: 9783031040894, IMAC-XL 2022-40th Conference and Exposition on Structural Dynamics, IMAC-XL 2022-40th Conference and Exposition on Structural Dynamics, Feb 2022, Orlando, United States. pp.1-9
Publication Year :
2022
Publisher :
Springer International Publishing, 2022.

Abstract

International audience; It is essential to predict accurately the critical speeds and associated vibration amplitudes of rotating machineries to ensure a correct design to limit noise nuisance and fatigue failure. However, numerous uncertainties are present, due to environmental variations or manufacturing tolerances for e.g., and must be taken into consideration in the design stage to limit their impact on the system dynamics. These uncertainties are usually modelled with a probability law and the dynamic response becomes stochastic. On the other side, during the design stage, a few key parameters, often called design parameters, are identified and tuned to ensure a robust conception of the rotor w.r.t to the uncertain model parameters. In this context, one must tackle a high-dimension parametric problem but numerous parameters of different nature. The efficiency of an advanced meta-modelling technique that couple polynomial chaos expansion and kriging is demonstrated here. The kriging efficiency is improved by introducing physical properties of the rotor. A finite element model of a rotor subjected to nine uncertain parameters is studied. The hybrid surrogate model gives a direct access to the Sobol indices, exploited to conduct an extensive sensitivity analysis.

Details

ISBN :
978-3-031-04089-4
ISBNs :
9783031040894
Database :
OpenAIRE
Journal :
Model Validation and Uncertainty Quantification, Volume 3 ISBN: 9783031040894, IMAC-XL 2022-40th Conference and Exposition on Structural Dynamics, IMAC-XL 2022-40th Conference and Exposition on Structural Dynamics, Feb 2022, Orlando, United States. pp.1-9
Accession number :
edsair.doi.dedup.....3be9908a6b879836c127202360474521
Full Text :
https://doi.org/10.1007/978-3-031-04090-0_6