Back to Search
Start Over
Electrical Transport Properties of Vanadium‐Doped Bi2Te2.4Se0.6
- Publication Year :
- 2020
- Publisher :
- Humboldt-Universität zu Berlin, 2020.
-
Abstract
- Vanadium‐doped Bi2–xTe2.4Se0.6 single crystals, with x = 0.015 and 0.03, are grown by the Bridgman method. Bandstructure characterization by angle‐resolved photoemission spectroscopy (ARPES) measurements shows gapless topological surface states for both vanadium concentrations. The Van‐der‐Pauw resistivity, the Hall charge carrier density, and the mobility in the temperature range from 0.3 to 300 K are strongly dependent on vanadium concentration, with carrier densities as low as 1.5 × 1016 cm−3 and mobilities as high as 570 cm2 V−1s−1. As expected for transport in gapless topological surface states, the resistivity, carrier density, and mobility are constant below 10 K. The magnetoresistance shows weak antilocalization for both vanadium concentrations in the same temperature range. The weak antilocalization is analyzed with the Hikami–Larkin–Nagaoka model, which yields phase‐coherence lengths of up to 250 nm for x = 0.015. Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659 Helmholtz-Gemeinschaft http://dx.doi.org/10.13039/501100001656
- Subjects :
- Materials science
business.industry
Doping
photoemission
topological insulators
transport properties
weak antilocalization
Vanadium
chemistry.chemical_element
Condensed Matter Physics
530 Physik
Electronic, Optical and Magnetic Materials
chemistry
Electrical transport
Topological insulator
Optoelectronics
ddc:530
business
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....3c7595b0a490a244f0c4e9110319bd59
- Full Text :
- https://doi.org/10.18452/22505