Back to Search Start Over

Hup-Me: Inferring and Reconciling a Timeline of User Activity from Rich Smartphone Data

Authors :
Serge Abiteboul
David Montoya
Pierre Senellart
Verification in databases (DAHU)
Laboratoire Spécification et Vérification [Cachan] (LSV)
École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
ENGIE Ineo - Safran RPAS Chair
SAFRAN Group-Aéroports de Paris-Ecole Nationale de l'Aviation Civile (ENAC)
École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Traitement et Communication de l'Information (LTCI)
Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)
Abiteboul, Serge
Source :
ACM SIGSPATIAL 2015-Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL 2015-Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, Nov 2015, Seattle, WA, United States, SIGSPATIAL/GIS
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; We designed a system to infer multimodal itineraries traveled by a user from a combination of smartphone sensor data (e.g., GPS, Wi-Fi, accelerometer) and knowledge of the transport network infrastructure (e.g., road and rail maps, public transportation timetables). The system uses a Transportation network that captures the set of possible paths of this network for the modes, e.g., foot, bicycle, road_vehicle, and rail. This Transportation network is constructed from OpenStreetMap data and public transportation routes published online by transportation agencies in GTFS format. Thesystem infers itineraries from a sequence of smartphone observations in two phases. The first phase uses a dynamic Bayesian network that models the probabilistic relationship between paths in Transportation network and sensor data. The second phase attempts to match portions recognized as road_vehicle or rail with possible public transportation routes of type bus, train, metro, or tram extracted from the GTFS source. We evaluated the performance of our systemwith data from users traveling over the Paris area who were asked to record data for different trips via an Android application. Itineraries were annotated with modes and public transportation routes taken and we report on the results of the recognition.

Details

Language :
English
Database :
OpenAIRE
Journal :
ACM SIGSPATIAL 2015-Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL 2015-Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, Nov 2015, Seattle, WA, United States, SIGSPATIAL/GIS
Accession number :
edsair.doi.dedup.....3cbcc8979a78de0d20fb756836121aba