Back to Search Start Over

Mu-suppression detection in motor imagery electroencephalographic signals using the generalized extreme value distribution

Authors :
Hadj Batatia
arlos D'Giano
Antonio Quintero-Rincón
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia - FLENI (ARGENTINA)
Institut de Recherche en Informatique de Toulouse - IRIT (Toulouse, France)
Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia [Buenos Aires] (FLENI)
FLENI
Traitement et Compréhension d’Images (IRIT-TCI)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Source :
2020 International Joint Conference on Neural Networks (IJCNN), International Joint Conference on Neural Networks (IJCNN 2020), International Joint Conference on Neural Networks (IJCNN 2020), Jul 2020, Glasgow, United Kingdom. pp.1-5, ⟨10.1109/IJCNN48605.2020.9206862⟩, IJCNN
Publication Year :
2020

Abstract

This paper deals with the detection of mu-suppression from electroencephalographic (EEG) signals in brain-computer interface (BCI). For this purpose, an efficient algorithm is proposed based on a statistical model and a linear classifier. Precisely, the generalized extreme value distribution (GEV) is proposed to represent the power spectrum density of the EEG signal in the central motor cortex. The associated three parameters are estimated using the maximum likelihood method. Based on these parameters, a simple and efficient linear classifier was designed to classify three types of events: imagery, movement, and resting. Preliminary results show that the proposed statistical model can be used in order to detect precisely the mu-suppression and distinguish different EEG events, with very good classification accuracy.<br />10 pages, 6 Figures, 4 tables

Details

Language :
English
Database :
OpenAIRE
Journal :
2020 International Joint Conference on Neural Networks (IJCNN), International Joint Conference on Neural Networks (IJCNN 2020), International Joint Conference on Neural Networks (IJCNN 2020), Jul 2020, Glasgow, United Kingdom. pp.1-5, ⟨10.1109/IJCNN48605.2020.9206862⟩, IJCNN
Accession number :
edsair.doi.dedup.....3cd0323dad4c59293e6c4797b6300785