Back to Search
Start Over
Detection of Cerebral Hemorrhage in Rabbits by Time-Difference Magnetic Inductive Phase Shift Spectroscopy
- Source :
- PLoS ONE, PLoS ONE, Vol 10, Iss 5, p e0128127 (2015)
- Publication Year :
- 2015
- Publisher :
- Public Library of Science (PLoS), 2015.
-
Abstract
- Cerebral hemorrhage, a difficult issue in clinical practice, is often detected and studied with computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). However, these expensive devices are not readily available in economically underdeveloped regions, and hence are unable to provide bedside and emergency on-site monitoring. The magnetic inductive phase shift (MIPS) is an emerging technology that may become a new tool to detect cerebral hemorrhage and to serve as an inexpensive partial substitute to medical imaging. In order to study a wider band of cerebral hemorrhage MIPS and to provide more useful information for measuring cerebral hemorrhage, we established a cerebral hemorrhage magnetic induction phase shift spectroscopy (MIPSS) detection system. Thirteen rabbits with five cerebral hemorrhage states were studied using a single coil-coil within a 1 MHz-200 MHz frequency range in linear sweep. A feature band (FB) with the highest detection sensitivity and the greatest stability was selected for further analysis and processing. In addition, a maximum conductivity cerebrospinal fluid (CSF) MRI was performed to verify and interpret the MIPSS result. The average phase shift change induced by a 3 ml injection of autologous blood under FB was -7.7503° ± 1.4204°, which was considerably larger than our previous work. Data analysis with a non-parametric statistical Friedman M test showed that in the FB, MIPSS could distinguish the five states of cerebral hemorrhage in rabbits, with a statistical significance of p
- Subjects :
- Diagnostic information
Multidisciplinary
medicine.diagnostic_test
business.industry
Science
Spectrum Analysis
Autologous blood
Magnetic resonance imaging
Magnetics
Cerebrospinal fluid
Positron emission tomography
Time difference
Anesthesia
medicine
Medical imaging
Medicine
Animals
Rabbits
Nuclear medicine
business
Spectroscopy
Research Article
Cerebral Hemorrhage
Subjects
Details
- ISSN :
- 19326203
- Volume :
- 10
- Database :
- OpenAIRE
- Journal :
- PLOS ONE
- Accession number :
- edsair.doi.dedup.....3d06154e2facf437bf49508320ffca75