Back to Search
Start Over
Effect of mycorrhizal inoculation on metal accumulation by poplar leaves at phytomanaged sites
- Source :
- Environmental and Experimental Botany, Environmental and Experimental Botany, Elsevier, 2017, 143, pp.72-81. ⟨10.1016/j.envexpbot.2017.08.012⟩
- Publication Year :
- 2017
- Publisher :
- HAL CCSD, 2017.
-
Abstract
- Phytotechnologies for the management of lands contaminated with potentially toxic elements (PTEs) are considered as gentle alternatives to conventional remediation techniques. During the last few years, phytotechnologies have progressively shifted to phytomanagement, a concept that includes the valorization of the plant biomass produced on the contaminated site. This study aimed at evaluating the mid-term effect of ecto- and endomycorrhizal inoculation on the reduction of PTE mobility in soils and foliar accumulation by two poplar clones, Skado ( Populus trichocarpa x P. maximowiczii ) and I-214 ( P. deltoides x P. nigra ), dedicated to bioenergy purposes. The effects of inoculation were investigated in two large scale trials of 1 ha each. Poplars grown on highly contaminated soils accumulated excessive Cd and Zn in leaves compared with those planted on less contaminated soils, and the I-214 clone generally accumulated less PTEs than the Skado clone. Interestingly, the filtering capacity of mycorrhizal fungi was significant for Zn, Cu, Pb and Cr in Skado leaves only at the most contaminated areas after two growing seasons. These foliar concentrations were not correlated with Ca(NO 3 ) 2 -extractable concentrations in soils, suggesting that mycorrhizal fungi limited PTE translocation from roots to leaves without impacting PTE mobility in soils. Therefore, the reduction of PTE accumulation in poplar leaves may be optimized by selecting appropriate combinations of cultivars and inocula at specific PTE levels and soil conditions. Because Cd and Zn may pose a risk after leaf abscission and wood harvest, further research is needed to efficiently reduce Cd and Zn concentrations in poplar tissues. Otherwise, the phytomanagement of metal contaminated sites with poplars should include options to safely manage both leaves and wood.
- Subjects :
- 2. Zero hunger
0106 biological sciences
Populus trichocarpa
[SDV.EE]Life Sciences [q-bio]/Ecology, environment
biology
Environmental remediation
Chemistry
Inoculation
Growing season
Biomass
Plant Science
15. Life on land
010501 environmental sciences
biology.organism_classification
01 natural sciences
Abscission
Agronomy
Soil water
Cultivar
Agronomy and Crop Science
Ecology, Evolution, Behavior and Systematics
ComputingMilieux_MISCELLANEOUS
010606 plant biology & botany
0105 earth and related environmental sciences
Subjects
Details
- Language :
- English
- ISSN :
- 00988472
- Database :
- OpenAIRE
- Journal :
- Environmental and Experimental Botany, Environmental and Experimental Botany, Elsevier, 2017, 143, pp.72-81. ⟨10.1016/j.envexpbot.2017.08.012⟩
- Accession number :
- edsair.doi.dedup.....3d0c7bb13b9ce8fd01f9fefe50967d22
- Full Text :
- https://doi.org/10.1016/j.envexpbot.2017.08.012⟩