Back to Search Start Over

Mechanistic Learning for Combinatorial Strategies With Immuno-oncology Drugs: Can Model-Informed Designs Help Investigators?

Authors :
Joseph Ciccolini
Fabrice Barlesi
Sebastien Benzekry
Dominique Barbolosi
Nicolas André
Simulation and Modeling of Adaptive Response for Therapeutics in Cancer (SMARTc)
Centre de Recherche en Cancérologie de Marseille (CRCM)
Aix Marseille Université (AMU)-Institut Paoli-Calmettes
Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut Paoli-Calmettes
Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Hôpital de la Timone [CHU - APHM] (TIMONE)
Institut Gustave Roussy (IGR)
Direction de la recherche clinique [Gustave Roussy]
Modélisation Mathématique pour l'Oncologie (MONC)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Institut Bergonié [Bordeaux]
UNICANCER-UNICANCER-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Benzekry, Sebastien
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Institut Bergonié [Bordeaux]
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Source :
JCO Precision Oncology, JCO Precision Oncology, 2020, 108 (4), pp.486-491. ⟨10.1200/PO.19.00381⟩, JCO precision oncology, JCO precision oncology, 2020, 108 (4), pp.486-491. ⟨10.1200/PO.19.00381⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; The amount of 'big' data generated in clinical oncology, whether from molecular, imaging, pharmacological or biological origin, brings novel challenges. To mine efficiently this source of information, mathematical models able to produce predictive algorithms and simulations are required, with applications for diagnosis, prognosis, drug development or prediction of the response to therapy. Such mathematical and computational constructs can be subdivided into two broad classes: biologically agnostic, statistical models using artificial intelligence techniques, and physiologically-based, mechanistic models. In this review, recent advances in the applications of such methods in clinical oncology are outlined. These include machine learning applied to big data (omics, imaging or electronic health records), pharmacometrics, quantitative systems pharmacology, tumor size kinetics, and metastasis modeling. Focus is set on studies with high potential of clinical translation, as well as applied to cancer immunotherapy. Perspectives are given in terms of combinations of the two approaches: 'mechanistic learning'.

Details

Language :
English
ISSN :
24734284
Database :
OpenAIRE
Journal :
JCO Precision Oncology, JCO Precision Oncology, 2020, 108 (4), pp.486-491. ⟨10.1200/PO.19.00381⟩, JCO precision oncology, JCO precision oncology, 2020, 108 (4), pp.486-491. ⟨10.1200/PO.19.00381⟩
Accession number :
edsair.doi.dedup.....3d2a6483053cfd5063f5c128013fa501
Full Text :
https://doi.org/10.1200/PO.19.00381⟩