Back to Search
Start Over
Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias
- Source :
- Frontiers in Physiology, Vol 3 (2012), Frontiers in Physiology
- Publication Year :
- 2012
- Publisher :
- Frontiers Media S.A., 2012.
-
Abstract
- Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic) arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte (CM) environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models have been generated, but these also have significant shortcomings, primarily related to species differences. The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC) has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human CMs can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here, we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially) characterized. Human iPSC (hiPSC) models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these disorders.
- Subjects :
- Genetically modified mouse
Pathology
medicine.medical_specialty
Somatic cell
Physiology
induced pluripotent stem cells
Timothy syndrome
cardiomyocytes
Review Article
Disease
heart
Catecholaminergic polymorphic ventricular tachycardia
Bioinformatics
lcsh:Physiology
cardiac arrhythmia syndromes
Physiology (medical)
medicine
human
Induced pluripotent stem cell
lcsh:QP1-981
business.industry
iPS
Cardiac arrhythmia
medicine.disease
electrophysiology
Phenotype
business
Subjects
Details
- Language :
- English
- ISSN :
- 1664042X
- Volume :
- 3
- Database :
- OpenAIRE
- Journal :
- Frontiers in Physiology
- Accession number :
- edsair.doi.dedup.....3da6325a287f709ddec911c2da18d2c0
- Full Text :
- https://doi.org/10.3389/fphys.2012.00346