Back to Search Start Over

On continued fraction expansions of quadratic irrationals in positive characteristic

Authors :
Frédéric Paulin
Uri Shapira
Paulin, Frédéric
Topologie, géométrie, dynamique
Laboratoire de Mathématiques d'Orsay (LM-Orsay)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
Department of Mathematics (TECHNION)
Technion - Israel Institute of Technology [Haifa]
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

Let $P$ be a prime polynomial in the variable $Y$ over a finite field and let $f$ be a quadratic irrational in the field of formal Laurant series in the variable $Y^{-1}$. We study the asymptotic properties of the degrees of the coefficients of the continued fraction expansion of quadratic irrationals such as $P^nf$ and prove results that are in sharp contrast to the analogue situation in zero characteristic.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....3dd7940d19717bfb752e3e3f43e2c0c7