Back to Search Start Over

Singularity of typeD4arising from four-qubit systems

Authors :
Frédéric Holweck
Michel Planat
Jean-Gabriel Luque
Laboratoire Mécatronique 3M - Méthodes, Modèles , Métiers (M3M)
Université de Technologie de Belfort-Montbeliard (UTBM)
Equipe Combinatoire et algorithmes (CA - LITIS)
Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS)
Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Université Le Havre Normandie (ULH)
Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Normandie Université (NU)
Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST)
Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Physics A: Mathematical and Theoretical, Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2014, 47, pp.135301. ⟨10.1088/1751-8113/47/13/135301⟩
Publication Year :
2014
Publisher :
IOP Publishing, 2014.

Abstract

An intriguing correspondence between four-qubit systems and simple singularity of type $D_4$ is established. We first consider an algebraic variety $X$ of separable states within the projective Hilbert space $\mathbb{P}(\mathcal{H})=\mathbb{P}^{15}$. Then, cutting $X$ with a specific hyperplane $H$, we prove that the $X$-hypersurface, defined from the section $X\cap H\subset X$, has an isolated singularity of type $D_4$; it is also shown that this is the "worst-possible" isolated singularity one can obtain by this construction. Moreover, it is demonstrated that this correspondence admits a dual version by proving that the equation of the dual variety of $X$, which is nothing but the Cayley hyperdeterminant of type $2\times 2\times 2\times 2$, can be expressed in terms of the SLOCC invariant polynomials as the discriminant of the miniversal deformation of the $D_4$-singularity.<br />Comment: 20 pages, 5 tables

Details

ISSN :
17518121 and 17518113
Volume :
47
Database :
OpenAIRE
Journal :
Journal of Physics A: Mathematical and Theoretical
Accession number :
edsair.doi.dedup.....3e357ca84dedce8f22cdb9173532f199
Full Text :
https://doi.org/10.1088/1751-8113/47/13/135301