Back to Search
Start Over
A $q$-Multisum Identity Arising from Finite Chain Ring Probabilities
- Source :
- The Electronic Journal of Combinatorics. 29
- Publication Year :
- 2022
- Publisher :
- The Electronic Journal of Combinatorics, 2022.
-
Abstract
- In this note, we prove a general identity between a $q$-multisum $B_N(q)$ and a sum of $N^2$ products of quotients of theta functions. The $q$-multisum $B_N(q)$ recently arose in the computation of a probability involving modules over finite chain rings.<br />Comment: 7 pages, to appear in the Electronic Journal of Combinatorics
- Subjects :
- Mathematics - Number Theory
Applied Mathematics
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
Theoretical Computer Science
[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]
Computational Theory and Mathematics
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
FOS: Mathematics
Mathematics - Combinatorics
Discrete Mathematics and Combinatorics
Number Theory (math.NT)
Combinatorics (math.CO)
Geometry and Topology
16P10, 16P70, 33D15
[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]
Subjects
Details
- ISSN :
- 10778926
- Volume :
- 29
- Database :
- OpenAIRE
- Journal :
- The Electronic Journal of Combinatorics
- Accession number :
- edsair.doi.dedup.....3eb1e027ce2dfd5c0d43c2aa184cac25
- Full Text :
- https://doi.org/10.37236/10691