Back to Search
Start Over
The neurotrophins NT3 and BDNF induce selective specification of neuropeptide coexpression and neuronal connectivity in arcuate and periventricular hypothalamic neurons in vitro
- Source :
- Neuroendocrinology. 75(1)
- Publication Year :
- 2002
-
Abstract
- Little is known on the influence of epigenetic factors in the developing hypothalamus, a region particularly involved in neuroendocrine regulation and rich in neuropeptides. The present study evaluated the effects of neurotrophins and neuronal activity on neuronal differentiation in hypothalamic cultures sampled from either arcuate or anterior periventricular regions of 17-day-old Sprague-Dawley fetuses. Expression of neuropeptides, tyrosine hydroxylase, neurotrophins and neurotrophin receptors was tested on young (6 days in vitro, DIV) and more mature (14 DIV) cultured neurons by multiple reverse transcription polymerase chain reaction on single cells. In parallel, spontaneous postsynaptic currents were recorded as an index of neuronal connectivity. Neurotrophin-3 (NT3) was expressed in a much larger population of neurons than brain-derived neurotrophic factor (BDNF) at both culture times. At 6 DIV, synaptic currents were scarce and expression of the neurotrophin receptors trkB and trkC was found in a small proportion of neurons only. These parameters increased markedly between 6 and 14 DIV, and also upon addition of neurotrophins. The most striking consequence of arcuate neuron maturation in vitro between 6 and 14 DIV was a marked phenotypic specification affecting somatostatin, neuropeptide Y and pro-opiomelanocortin, the three major neuropeptides expressed in the cultures. NT3, but not BDNF, was able to reproduce maturation-related phenotypic specification in 6 DIV arcuate cultures. Maturation-dependent phenotypic specification was less marked in periventricular cultures; in that case BDNF, not NT3 had a slight effect on phenotype specification. It is concluded that NT3 plays a selective role in phenotypic specification of neuropeptides in the arcuate region, whereas other maturation parameters (neurotrophin receptor expression and/or synaptogenesis) can be potentiated by either neurotrophin in both structures.
- Subjects :
- medicine.medical_specialty
Patch-Clamp Techniques
Pro-Opiomelanocortin
Tyrosine 3-Monooxygenase
Endocrinology, Diabetes and Metabolism
Receptor expression
Neuropeptide
Gene Expression
Galanin
Tropomyosin receptor kinase B
In Vitro Techniques
Growth Hormone-Releasing Hormone
Tropomyosin receptor kinase C
Rats, Sprague-Dawley
Cellular and Molecular Neuroscience
Endocrinology
Neurotrophin 3
Neurotrophic factors
Arcuate nucleus
Internal medicine
Neural Pathways
medicine
Animals
Receptor, trkB
Neuropeptide Y
Receptor, trkC
Cells, Cultured
DNA Primers
Neurons
biology
Endocrine and Autonomic Systems
Brain-Derived Neurotrophic Factor
Arcuate Nucleus of Hypothalamus
Rats
Phenotype
nervous system
Neuron maturation
biology.protein
Somatostatin
Neuroscience
Neurotrophin
Paraventricular Hypothalamic Nucleus
Subjects
Details
- ISSN :
- 00283835
- Volume :
- 75
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Neuroendocrinology
- Accession number :
- edsair.doi.dedup.....3ec3b0a75d90a58c6a7b4b42d7058c66