Back to Search
Start Over
Classification and mapping of anthropogenic landforms on cultivated hillslopes using DEMs and soil thickness data - Example from the SW Parisian Basin, France
- Source :
- Geomorphology, Geomorphology, Elsevier, 2011, 135 (1-2), pp.8-20. ⟨10.1016/j.geomorph.2011.07.020⟩, Geomorphology 1-2 (135), 8-20. (2011)
- Publication Year :
- 2011
- Publisher :
- HAL CCSD, 2011.
-
Abstract
- International audience; This study focuses on linear anthropogenic landforms of decametric width on cultivated hillslopes and their relations to soil thickness variability. The 16 ha study area shows a rolling topography supported by Cretaceous chalk of the SW Parisian Basin, France. Two types of landforms were identified: lynchets, similar to those described as soil terraces occurring on downslope field parts in other contexts, and undulations, linear, convex landforms that cut across fields. Accurate DEM construction and a detailed soil thickness survey were performed all over the study area. Soil samples were classified considering their location on specific types of anthropogenic landforms. The classification tree (CT) method was applied to assess whether lynchets and undulations can be discriminated through morphometric attributes (slope, curvature, profile curvature and planform curvature) and soil thickness (CTsoil) or through morphometric attributes only (CTtopo). The CT application establishes predictive classification models to map the spatial distribution of lynchets and undulations over the whole study area. The validation results of the CTsoil and CTtopo applications show model efficiencies of 83% and 67%, respectively. Both models performed well for lynchets. Errors arise mainly from difficulties in unequivocally discriminating gently convex undulations and undifferentiated surfaces, especially when soil thickness is not accounted for. Mean values of soil thickness are 1.08, 0.62 and 0.45 m in lynchets, undulations and undifferentiated areas, respectively. The general shape of the thickened soil is characteristic to each type of anthropogenic landform. Multi-temporal mapping of field border networks shows that undulations are linked to borders that were removed during the latest land consolidation. Lynchets are associated with current field borders. Lynchets and undulations, which cover 39% of the study area, define topographic indicators of human-induced soil accumulations. The method involves perspectives for efficiently mapping and quantifying the anthropogenically modified spatial variability of soil thickness on agricultural hillsides.
- Subjects :
- 010504 meteorology & atmospheric sciences
Soil test
Morphometric attributes
[SDE.MCG]Environmental Sciences/Global Changes
Digital Elevation Model
Structural basin
bassin parisien
Spatial distribution
01 natural sciences
Field borders
Lynchet
Digital elevation model
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment
Geomorphology
0105 earth and related environmental sciences
Earth-Surface Processes
geography
geography.geographical_feature_category
Landform
anthropogenic landform
predictive modelling
parisian basin
modèle numérique de terrain
attribut morphométrique
épaisseur du sol
banquette
parcellaire
arbre de classification
digital elevation model
morphometric attribute
soil thickness
lynchet
field border
classification tree
relief anthropique
modélisation prédictive
physical
geosciences
multidisciplinary
geology
04 agricultural and veterinary sciences
15. Life on land
Current (stream)
040103 agronomy & agriculture
0401 agriculture, forestry, and fisheries
Spatial variability
Classification Tree
Geology
Soil thickness
Subjects
Details
- Language :
- English
- ISSN :
- 0169555X
- Database :
- OpenAIRE
- Journal :
- Geomorphology, Geomorphology, Elsevier, 2011, 135 (1-2), pp.8-20. ⟨10.1016/j.geomorph.2011.07.020⟩, Geomorphology 1-2 (135), 8-20. (2011)
- Accession number :
- edsair.doi.dedup.....3efeceb162895f95edc53ffcd76dbc20
- Full Text :
- https://doi.org/10.1016/j.geomorph.2011.07.020⟩