Back to Search Start Over

Detection of an Electron Paramagnetic Resonance Signal in the S0 State of the Manganese Complex of Photosystem II from Synechococcus elongatus

Authors :
Alain Boussac
Ghibaudi E
H. Kuhl
Matthias Rögner
A. W. Rutherford
Source :
Biochemistry. 38:11942-11948
Publication Year :
1999
Publisher :
American Chemical Society (ACS), 1999.

Abstract

The Mn(4)-cluster of photosystem II (PSII) from Synechococcus elongatus was studied by electron paramagnetic resonance (EPR) spectroscopy after a series of saturating laser flashes given in the presence of either methanol or ethanol. Results were compared to those obtained in similar experiments done on PSII isolated from plants. The flash-dependent changes in amplitude of the EPR multiline signals were virtually identical in all samples. In agreement with earlier work [Messinger, J., Nugent, J. H. A., and Evans, M. C. W. (1997) Biochemistry 36, 11055-11060; Ahrling, K. A., Peterson, S., and Styring, S. (1997) Biochemistry 36, 13148-13152], detection of an EPR multiline signal from the S(0) state in PSII from plants was only possible with methanol present. In PSII from S. elongatus, it is shown that the S(0) state exhibits an EPR multiline signal in the absence of methanol (however, ethanol was present as a solvent for the artificial electron acceptor). The hyperfine lines are better resolved when methanol is present. The S(0) multiline signals detected in plant PSII and in S. elongatus were similar but not identical. Unlike the situation seen in plant PSII, the S(2) state in S. elongatus is not affected by the addition of methanol in that (i) the S(2) multiline EPR signal is not modified by methanol and (ii) the spin state of the S(2) state is affected by infrared light when methanol is present. It is also shown that the magnetic relaxation properties of an oxidized low-spin heme, attributed to cytochrome c(550), vary with the S states. This heme then is in the magnetic environment of the Mn(4) cluster.

Details

ISSN :
15204995 and 00062960
Volume :
38
Database :
OpenAIRE
Journal :
Biochemistry
Accession number :
edsair.doi.dedup.....3f1ddf2eef12ff50d79641ee06ddcc91