Back to Search Start Over

Constitutive expression of chloroplast glycerol-3-phosphate acyltransferase from Ammopiptanthus mongolicus enhances unsaturation of chloroplast lipids and tolerance to chilling, freezing and oxidative stress in transgenic Arabidopsis

Authors :
Wenjun Zhang
Ting Guo
Kuangang Tang
Maoyan Wang
Zhilin Wang
Min Xue
Meiyan Ren
Source :
Plant Physiology and Biochemistry. 143:375-387
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Chloroplast glycerol-3-phosphate acyltransferase (GPAT) is the first key enzyme determining the unsaturation of phosphatidylglycerol (PG) in thylakoid membranes and is involved in the tolerance of plants to chilling, heat and high salinity. However, whether the GPAT affects plant tolerance to other stressors has been scarcely reported. Ammopiptanthus mongolicus is the only evergreen broadleaf shrub growing in the central Asian desert, and it has a high tolerance to harsh environments, especially extreme cold. This study aimed to characterize the physiological function of AmGPAT from A. mongolicus. The transcription of AmGPAT was markedly induced by cold and drought but differentially suppressed by heat and high salinity in the laboratory-cultured seedlings. The gene also had the highest transcription levels in the leaves of shrubs naturally growing in the wild during the late autumn and winter months throughout the year. Moreover, AmGPAT was most abundantly expressed in leaves and immature pods rather than other organs of the shrubs. Constitutive expression of AmGPAT in Arabidopsis increased the levels of cis-unsaturated fatty acids, especially that of linolenic acid (18:3), mainly in PG but also in other chloroplast lipids in transgenic lines. More importantly, the transgene significantly increased the tolerance of the transgenics not only to chilling but also to freezing and oxidative stress at both the cellular and whole-plant levels. In contrast, this gene reduced heat tolerance of the transgenic plants. This study improves the current understanding of chloroplast GPAT in plant tolerance against abiotic stressors through regulating the unsaturation of chloroplast lipids, mainly that of PG.

Details

ISSN :
09819428
Volume :
143
Database :
OpenAIRE
Journal :
Plant Physiology and Biochemistry
Accession number :
edsair.doi.dedup.....3f549f40a7d1cb662d4232f0838a5115