Back to Search Start Over

Selective Manganese-Catalyzed Dimerization and Cross-Coupling of Terminal Alkynes

Authors :
Luis F. Veiros
Karl Kirchner
Stefan Weber
Source :
ACS Catalysis
Publication Year :
2021
Publisher :
American Chemical Society, 2021.

Abstract

For the first time, an efficient manganese-catalyzed dimerization of terminal alkynes to afford 1,3-enynes is described. This reaction is atom economic, implementing an inexpensive, earth abundant non-precious metal catalyst. The pre-catalyst is the bench-stable alkyl bisphosphine Mn(I) complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate which undergoes rapid C-H bond cleavage of the alkyne forming an active Mn(I) acetylide catalyst [Mn(dippe)(CO)2(C≡CPh)(η2-HC≡CPh)] together with liberated butanal. A range of aromatic and aliphatic terminal alkynes were efficiently and selectively converted into head-to-head Z-1,3-enynes and head-to-tail gem-1,3-enynes, respectively, in good to excellent yields. Moreover, cross-coupling of aromatic and aliphatic alkynes yields selectively head-to-tail gem-1,3-enynes. In all cases, the reactions were performed at 70 °C with a catalyst loading of 1-2 mol %. A mechanism based on DFT calculations is presented.

Details

Language :
English
ISSN :
21555435
Volume :
11
Issue :
11
Database :
OpenAIRE
Journal :
ACS Catalysis
Accession number :
edsair.doi.dedup.....3fbb4fab44f0c2cb75239fcec24eb264