Back to Search
Start Over
Szegö polynomials and Szegö quadrature for the Fejér kernel
- Source :
- Journal of Computational and Applied Mathematics. 179(1-2):327-341
- Publication Year :
- 2005
- Publisher :
- Elsevier BV, 2005.
-
Abstract
- Szegö polynomials and Szegö quadrature on the unit circle are studied for the Fejér kernel. Connections with orthogonal polynomials on the line and Padé approximants are obtained.
- Subjects :
- Mathematics::Functional Analysis
Pure mathematics
Gegenbauer polynomials
Mathematics::Complex Variables
Orthogonal polynomials
Discrete orthogonal polynomials
Applied Mathematics
Mathematical analysis
Mathematics::Classical Analysis and ODEs
Fejér kernel
Generalized Jacobi weight function
Mathematics::Spectral Theory
Mathematics::Numerical Analysis
Classical orthogonal polynomials
Computational Mathematics
Unit circle
Difference polynomials
Padé approximants
Wilson polynomials
Szegö quadrature
Clenshaw–Curtis quadrature
Mathematics
Subjects
Details
- ISSN :
- 03770427
- Volume :
- 179
- Issue :
- 1-2
- Database :
- OpenAIRE
- Journal :
- Journal of Computational and Applied Mathematics
- Accession number :
- edsair.doi.dedup.....3fbea07d1be71c6d8b45ca197b010a03
- Full Text :
- https://doi.org/10.1016/j.cam.2004.09.048