Back to Search
Start Over
Effect of Co Substitution and Thermo-Magnetic Treatment on the Structure and Induced Magnetic Anisotropy of Fe84.5−xCoxNb5B8.5P2 Nanocrystalline Alloys
- Source :
- Materials, Vol 14, Iss 3433, p 3433 (2021), Materials, Volume 14, Issue 12
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- In the present work, we investigated in detail the thermal/crystallization behavior and magnetic properties of materials with Fe84.5-xCoxNb5B8.5P2 (x = 0, 5, 10, 15 and 20 at.%) composition. The amorphous ribbons were manufactured on a semi-industrial scale by the melt-spinning technique. The subsequent nanocrystallization processes were carried out under different conditions (with/without magnetic field). The comprehensive studies have been carried out using differential scanning calorimetry, X-ray diffractometry, transmission electron microscopy, hysteresis loop analyses, vibrating sample magnetometry and Mössbauer spectroscopy. Moreover, the frequency (up to 300 kHz) dependence of power losses and permeability at a magnetic induction up to 0.9 T was investigated. On the basis of some of the results obtained, we calculated the values of the activation energies and the induced magnetic anisotropies. The X-ray diffraction results confirm the surface crystallization effect previously observed for phosphorous-containing alloys. The in situ microscopic observations of crystallization describe this process in detail in accordance with the calorimetry results. Furthermore, the effect of Co content on the phase composition and the influence of annealing in an external magnetic field on magnetic properties, including the orientation of the magnetic spins, have been studied using various magnetic techniques. Finally, nanocrystalline Fe64.5Co20Nb5B8.5P2 cores were prepared after transverse thermo-magnetic heat treatment and installed in industrially available portable heating equipment.
- Subjects :
- Technology
Materials science
Magnetometer
Article
law.invention
thermo-magnetic treatment
Differential scanning calorimetry
law
induced magnetic anisotropy
General Materials Science
Crystallization
Microscopy
QC120-168.85
Condensed matter physics
surface crystallization
QH201-278.5
Engineering (General). Civil engineering (General)
Nanocrystalline material
TK1-9971
Amorphous solid
Magnetic field
Magnetic anisotropy
Descriptive and experimental mechanics
Permeability (electromagnetism)
Electrical engineering. Electronics. Nuclear engineering
TA1-2040
soft magnetic materials
Subjects
Details
- ISSN :
- 19961944
- Volume :
- 14
- Database :
- OpenAIRE
- Journal :
- Materials
- Accession number :
- edsair.doi.dedup.....3fd1400e44170c3b03c5b385837d5b30
- Full Text :
- https://doi.org/10.3390/ma14123433