Back to Search
Start Over
Cellular oxidative damage is more sensitive to biosynthetic rate than to metabolic rate: A test of the theoretical model on hornworms (Manduca sexta larvae)
- Source :
- Experimental gerontology. 82
- Publication Year :
- 2016
-
Abstract
- We develop a theoretical model from an energetic viewpoint for unraveling the entangled effects of metabolic and biosynthetic rates on oxidative cellular damage accumulation during animal's growth, and test the model by experiments in hornworms. The theoretical consideration suggests that most of the cellular damages caused by the oxidative metabolism can be repaired by the efficient maintenance mechanisms, if the energy required by repair is unlimited. However, during growth a considerable amount of energy is allocated to the biosynthesis, which entails tradeoffs with the requirements of repair. Thus, the model predicts that cellular damage is more influenced by the biosynthetic rate than the metabolic rate. To test the prediction, we induced broad variations in metabolic and biosynthetic rates in hornworms, and assayed the lipid peroxidation and protein carbonyl. We found that the increase in the cellular damage was mainly caused by the increase in biosynthetic rate, and the variations in metabolic rate had negligible effect. The oxidative stress hypothesis of aging suggests that high metabolism leads to high cellular damage and short lifespan. However, some empirical studies showed that varying biosynthetic rate, rather than metabolic rate, changes animal's lifespan. The conflicts between the empirical evidence and the hypothesis are reconciled by this study.
- Subjects :
- 0106 biological sciences
0301 basic medicine
Aging
Protein Carbonylation
Oxidative phosphorylation
medicine.disease_cause
010603 evolutionary biology
01 natural sciences
Biochemistry
Lipid peroxidation
03 medical and health sciences
chemistry.chemical_compound
Endocrinology
Biosynthesis
Manduca
Genetics
medicine
Animals
Theoretical model
Molecular Biology
Caloric Restriction
Energy
biology
Ecology
Tradeoff
Cell Biology
Metabolism
Models, Theoretical
biology.organism_classification
Cell biology
Ageing
Oxidative Stress
030104 developmental biology
chemistry
Manduca sexta
Larva
Linear Models
Lipid Peroxidation
Repair
Oxidative stress
Subjects
Details
- ISSN :
- 18736815
- Volume :
- 82
- Database :
- OpenAIRE
- Journal :
- Experimental gerontology
- Accession number :
- edsair.doi.dedup.....402b6a33f1c604ca69b7e3ae6726caf2