Back to Search Start Over

Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition

Authors :
Jyotshna Pokharel
Ashim Gurung
Fan Wu
Kang Xu
Rajesh Pathak
Qiquan Quinn Qiao
Wei He
Yue Zhou
Khan Mamun Reza
Behzad Bahrami
Ke Chen
Abiral Baniya
Source :
Nature Communications, Vol 11, Iss 1, Pp 1-10 (2020), Nature Communications
Publication Year :
2020
Publisher :
Nature Publishing Group, 2020.

Abstract

Lithium metal anodes have attracted extensive attention owing to their high theoretical specific capacity. However, the notorious reactivity of lithium prevents their practical applications, as evidenced by the undesired lithium dendrite growth and unstable solid electrolyte interphase formation. Here, we develop a facile, cost-effective and one-step approach to create an artificial lithium metal/electrolyte interphase by treating the lithium anode with a tin-containing electrolyte. As a result, an artificial solid electrolyte interphase composed of lithium fluoride, tin, and the tin-lithium alloy is formed, which not only ensures fast lithium-ion diffusion and suppresses lithium dendrite growth but also brings a synergistic effect of storing lithium via a reversible tin-lithium alloy formation and enabling lithium plating underneath it. With such an artificial solid electrolyte interphase, lithium symmetrical cells show outstanding plating/stripping cycles, and the full cell exhibits remarkably better cycling stability and capacity retention as well as capacity utilization at high rates compared to bare lithium.<br />Here the authors report a simple method to create a solid electrolyte interphase that is tightly anchored onto the surface of lithium metal anode. This artificial structure suppresses dead and dendrite Li and stores Li via formation of alloys, enabling impressive battery performance.

Details

Language :
English
ISSN :
20411723
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....403da3903981a2b597c14e3c4582d53e