Back to Search Start Over

Dosimetric and localization accuracy of Elekta high definition dynamic radiosurgery

Authors :
Evangelos Pappas
Ying Li
Karl Rasmussen
Nikos Papanikolaou
Sotirios Stathakis
Daniel Saenz
Source :
Physica Medica. 54:146-151
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

With the increasingly prominent role of stereotactic radiosurgery in radiation therapy, there is a clinical need for robust, efficient, and accurate solutions for targeting multiple sites with one patient setup. The end-to-end accuracy of high definition dynamic radiosurgery with Elekta treatment planning and delivery systems was investigated in this study.A patient-derived CT scan was used to create a radiosurgery plan to seven targets in the brain. Monaco was used for treatment planning using 5 VMAT non-coplanar arcs. Prior to delivery, 3D-printed phantoms from RTsafe were ordered including a gel phantom for 3D dosimetry, phantom with 2D film insert, and an ion chamber phantom for point dose measurement. Delivery was performed using the Elekta VersaHD, XVI cone-beam CT, and HexaPOD six degree of freedom tabletop.Absolute dose accuracy was verified within 2%. 3D global gamma analysis in the film measurement revealed 3%/2 mm passing rates95%. Gel dosimetry 3D global gamma analysis (3%/2 mm) were above 90% for all targets with the exception of one. Results were indicative of typical end-to-end accuracies (1 mm spatial uncertainty, 2% dose accuracy) within 4 cm of isocenter. Beyond 4 cm, 2 mm accuracy was found.High definition dynamic radiosurgery expands clinically acceptable stereotactic accuracy to a sphere around isocenter allowing for radiosurgery of several targets with one setup with a high degree of dosimetric precision. Gel dosimetry proved to be an essential tool for the validation of the 3D dose distributions in this technique.

Details

ISSN :
11201797
Volume :
54
Database :
OpenAIRE
Journal :
Physica Medica
Accession number :
edsair.doi.dedup.....4093e292559264cbc8736a1d3b87fd9c