Back to Search
Start Over
The ubiquitin-dependent ATPase p97 removes cytotoxic trapped PARP1 from chromatin
- Publication Year :
- 2021
- Publisher :
- Cold Spring Harbor Laboratory, 2021.
-
Abstract
- Summary paragraphPoly-(ADP-ribose) polymerase inhibitors (PARPi) elicit anti-tumour activity in homologous recombination defective cancers by promoting cytotoxic, chromatin-bound, “trapped” PARP1. How cells process trapped PARP1 remains unclear. By exploiting wild-type or trapping-resistant PARP1 transgenes combined with either a rapid immunoprecipitation mass-spectrometry of endogenous proteins (RIME)-based approach, or PARP1 Apex2-proximity labelling linked to mass-spectrometry, we generated proteomic profiles of trapped and non-trapped PARP1 complexes. This combined approach identified an interaction between trapped PARP1 and the ubiquitin-regulated p97 ATPase (aka VCP). Subsequent experiments demonstrated that upon trapping, PARP1 is SUMOylated by the SUMO-ligase PIAS4 and subsequently ubiquitinated by the SUMO-targeted E3-ubiquitin ligase, RNF4, events that promote p97 recruitment and p97 ATPase-mediated removal of trapped-PARP1 from chromatin. Consistent with this, small molecule p97 complex inhibitors, including a metabolite of the clinically-used drug disulfiram (CuET) that acts as a p97 sequestration agent, prolong PARP1 trapping and thus enhance PARPi-induced cytotoxicity in homologous recombination-defective tumour cells and patient-derived tumour organoids. Taken together, these results suggest that p97 ATPase plays a key role in the processing of trapped PARP1 from chromatin and the response of homologous recombination defective tumour cells to PARPi.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....40976d3695cd0608b753e0e491a87e4a
- Full Text :
- https://doi.org/10.1101/2021.07.16.452473