Back to Search Start Over

Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson’s Disease

Authors :
Vija Klusa
Ruta Muceniece
Darja Svirina
Jolanta Pupure
Zane Dzirkale
Ulrika Beitnere
Juris Rumaks
Sergejs Isajevs
Ivars Kalvinsh
Baiba Jansone
Simons Svirskis
Harry V. Vinters
Source :
International Journal of Molecular Sciences, International Journal of Molecular Sciences, Vol 11, Iss 11, Pp 4465-4487 (2010), International Journal of Molecular Sciences; Volume 11; Issue 11; Pages: 4465-4487
Publication Year :
2010
Publisher :
MDPI AG, 2010.

Abstract

Previously, we have found that mildronate [3-(2,2,2-trimethylhydrazinium) propionate dihydrate], a small molecule with charged nitrogen and oxygen atoms, protects mitochondrial metabolism that is altered by inhibitors of complex I and has neuroprotective effects in an azidothymidine-neurotoxicity mouse model. In the present study, we investigated the effects of mildronate in a rat model of Parkinson’s disease (PD) that was generated via a unilateral intrastriatal injection of the neurotoxin 6-hydroxydopamine (6‑OHDA). We assessed the expression of cell biomarkers that are involved in signaling cascades and provide neural and glial integration: the neuronal marker TH (tyrosine hydroxylase); ubiquitin (a regulatory peptide involved in the ubiquitin-proteasome degradation system); Notch-3 (a marker of progenitor cells); IBA-1 (a marker of microglial cells); glial fibrillary acidic protein, GFAP (a marker of astrocytes); and inducible nitric oxide synthase, iNOS (a marker of inflammation). The data show that in the 6-OHDA-lesioned striatum, mildronate completely prevented the loss of TH, stimulated Notch-3 expression and decreased the expression of ubiquitin, GFAP and iNOS. These results provide evidence for the ability of mildronate to control the expression of an array of cellular proteins and, thus, impart multi-faceted homeostatic mechanisms in neurons and glial cells in a rat model of PD. We suggest that the use of mildronate provides a protective effect during the early stages of PD that can delay or halt the progression of this neurodegenerative disease.

Details

ISSN :
14220067
Volume :
11
Database :
OpenAIRE
Journal :
International Journal of Molecular Sciences
Accession number :
edsair.doi.dedup.....40979f1b0ec9dc95466d9771d3a0383e
Full Text :
https://doi.org/10.3390/ijms11114465