Back to Search
Start Over
A Variable Krasnoselski–Mann Algorithm for a New Class of Fixed Point Problems
- Source :
- Numerical Functional Analysis and Optimization, Numerical Functional Analysis and Optimization, Taylor & Francis, 2009, 30 (5-6), pp.582-590. ⟨10.1080/01630560902987436⟩
- Publication Year :
- 2009
- Publisher :
- Informa UK Limited, 2009.
-
Abstract
- International audience; We study the convergence of a variable version of the Krasnoselski-Mann algorithm applied to a primal dual fixed point problem. The link with Spingarn's partial inverse method is made, and an application to feasibility problems and mathematical programming is also proposed.
- Subjects :
- Mathematical optimization
Control and Optimization
010102 general mathematics
Fixed point
01 natural sciences
Firmly nonexpansive mapping
Computer Science Applications
Primal dual
010101 applied mathematics
Partial inverse
Fixed point problem
K-M algorithm
Signal Processing
Convergence (routing)
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
0101 mathematics
Link (knot theory)
Algorithm
Inverse method
Analysis
Mathematics
Variable (mathematics)
Subjects
Details
- ISSN :
- 15322467 and 01630563
- Volume :
- 30
- Database :
- OpenAIRE
- Journal :
- Numerical Functional Analysis and Optimization
- Accession number :
- edsair.doi.dedup.....4097eb45df51ccaaebf6e8abff7fbc9e
- Full Text :
- https://doi.org/10.1080/01630560902987436